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Horizon-free and Second-order MBRL: Preliminaries

We consider finite horizon time-homogenous MDP
M = {S,A,H, P ⋆, r, s0}

S,A are the state and action space
H ∈ N+ is the horizon for each episode
P ⋆ : S ×A 7→ ∆(S) is the ground truth unknown transition
r : S ×A 7→ R is the known reward signal, and s0 is the fixed initial state.

At each episode, the agent interacts with the environment over a sequence
of H time steps. Specifically, starting from the initial state s0, at each
time step h ∈ [H − 1],

the agent observes the current state sh ∈ S,
takes an action ah = πh(sh) ∈ A according to its policy,
receives a reward r(sh, ah), and
the environment transitions to the next state sh+1 ∼ P ⋆(· | sh, ah).
The cumulative reward over the episode is defined as

∑H−1
h=0 r(sh, ah).
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Horizon-free and Second-order MBRL: Preliminaries

V π
h (s) represents the expected total reward of policy π starting at sh = s

Qπ
h(s, a) is the expected total reward of the process of executing a at s at

time step h followed by executing π to the end.
The optimal policy π⋆ is defined as π⋆ = argmaxπV

π
0 (s0).

Since we use the model-based approach for learning, we define a general
model class P ⊂ S ×A 7→ ∆(S).
Given a transition P , we denote V π

h;P and Qπ
h;P as the value and Q

functions of policy π under the model P .
Given a function f : S ×A 7→ R, we denote the
(Pf)(s, a) := Es′∼P (s,a)f(s

′). We then denote the variance induced by
one-step transition P and function f as
(VP f)(s, a) :=

(
Pf2

)
(s, a)− (Pf(s, a))

2 which is equal to
Es′∼P (s,a)f

2(s′)−
(
Es′∼P (s,a)f(s

′)
)2.
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Horizon-free and Second-order MBRL: Preliminaries

Assumptions:
1 Realizability: P ⋆ ∈ P.
2 We assume that the rewards are normalized such that r(τ) ∈ [0, 1] for any

trajectory τ := {s0, a0, . . . , sH−1, aH−1} where r(τ) is short for∑H−1
h=0 r(sh, ah).
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Horizon-free and Second-order MBRL: Preliminaries

Online RL:
1 We focus on the episodic setting where the learner can interact with the

environment for K episodes. At episode k, the learner proposes a policy πk

(based on the past interaction history), executes πk starting from s0 to
time step H − 1.

2 We measure the performance of the online learning via regret:∑K−1
k=0

(
V π⋆

− V πk
)

.
3 To achieve meaningful regret bounds, we often need additional structural

assumptions on the MDP and the model class P. We use the ℓ1 Eluder
dimension as the structural condition [1].
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Horizon-free and Second-order MBRL: Preliminaries

Offline RL:
1 For the offline RL setting, we assume that we have a pre-collected offline

dataset D = {τ i}Ki=1 which contains K trajectories.
2 To succeed in offline learning, we typically require the offline dataset to

have good coverage over some high-quality comparator policy π∗.
3 Our goal is to learn a policy π̂ that is as good as π∗, and we are interested

in the performance gap between π̂ and π∗, i.e., V π∗
− V π̂.
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Horizon-free and Second-order MBRL: Preliminaries

Horizon-free Bound:
1 The regret or sample complexity bounds have no explicit polynomial

dependence on the horizon H.
2 Motivation: to see if RL problems are harder than contextual bandits due

to the longer horizon planning in RL.
3 Some previous works use extremely complex algorithms and analysis in the

tabular MDP case1.
Second-order Bound:

1 Denote VaRπ as the variance of trajectory reward, i.e.,
VaRπ := Eτ∼π(r(τ)−Eτ∼πr(τ))

2. Second-order bounds in offline RL scales
with VaRπ∗ – the variance of the comparator policy. Second-order regret
bound in online setting scales with respect to

√∑
k VaRπk instead of

√
K.

2 The second-order bound can be small under situations such as
nearly-deterministic systems or the optimal policy having a small value.

1e.g., [1] Settling the Horizon-Dependence of Sample Complexity in Reinforcement
Learning, FOCS 2021
and [2] Horizon-Free Reinforcement Learning in Polynomial Time: the Power of Stationary
Policies, COLT 2022
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Horizon-free and Second-order MBRL: Key Message

The key message of our work is

Simple and standard MLE-based MBRL
algorithms are sufficient for achieving nearly

horizon-free and second-order bounds in online
and offline RL with function approximation.
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Horizon-free and Second-order MBRL: Online Setting

At episode k, O-MBRL splits the trajectory data that contains k − 1
trajectories into a dataset of (s, a, s′) tuples which is used to perform
maximum likelihood estimation maxP̃∈P

∑n
i=1 log P̃ (s′i|si, ai).

It then builds a version space P̂k which contains models P ∈ P whose log
data likelihood is not below by too much than that of the MLE estimator.
The version space is designed such that for all k ∈ [0,K − 1], we have
P ⋆ ∈ P̂k with high probability.
The policy πk in this case is computed via the optimism principle.
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Horizon-free and Second-order MBRL: Online Setting

We work with the ℓ1 Eluder dimension DE1(Ψ,S ×A, ϵ) with the
function class Ψ specified as:

Ψ = {(s, a) 7→ H2(P ⋆(s, a) ‖ P (s, a)) : P ∈ P} .

Remark
The ℓ1 Eluder dimension has been widely used in previous works [1]. It can
capture tabular, linear, and generalized linear models.
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Horizon-free and Second-order MBRL: Online Setting

Theorem (Main theorem for online setting)

For any δ ∈ (0, 1), let β = 4 log
(

K|P|
δ

)
, with probability at least 1− δ,

O-MBRL achieves the following regret bound:

K−1∑
k=0

(V π⋆

− V πk

) ≤ O
(√√√√K−1∑

k=0

VaRπk · DE1(Ψ,S ×A, 1/KH) · log(KH |P| /δ) log(KH)

+ DE1(Ψ,S ×A, 1/KH) · log(KH |P| /δ) log(KH)
)
. (1)

The above theorem indicates the standard and simple O-MBRL algorithm
is already enough to achieve horizon-free and second-order regret bounds:
our bound does not have explicit polynomial dependences on horizon H,
the leading term scales with

√∑
k VaRπk instead of the typical

√
K.
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Horizon-free and Second-order MBRL: Online Setting

When the underlying MDP has deterministic transitions, we can achieve a
smaller regret bound that only depends on the number of episodes
logarithmically.

Corollary (logK regret bound with deterministic transitions)
When the transition dynamics of the MDP are deterministic, setting
β = 4 log

(
K|P|

δ

)
, w.p. at least 1− δ, O-MBRL achieves:

K−1∑
k=0

V π⋆

− V πk

≤ O (DE1(Ψ,S ×A, 1/KH) · log(KH |P| /δ) log(KH)) .

Zhiyong Wang Talk at SJTU May, 2025 13 / 30



Horizon-free and Second-order MBRL: Offline Setting

CPPO-LR splits the offline trajectory data that contains K trajectories
into a dataset of (s, a, s′) tuples which is used to perform maximum
likelihood estimation maxP̃∈P

∑n
i=1 log P̃ (s′i|si, ai).

It then builds a version space P̂ which contains models P ∈ P whose log
data likelihood is not below by too much than that of the MLE estimator.
The threshold for the version space is constructed so that with high
probability, P ⋆ ∈ P̂.
Once we build a version space, we perform pessimistic planning to
compute π̂.
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Horizon-free and Second-order MBRL: Offline Setting

Definition (Single policy coverage)
Given any comparator policy π∗, denote the data-dependent single policy
concentrability coefficient Cπ∗

D as follows:

Cπ∗
D := max

h,P∈P

Es,a∼dπ
∗

h
H2 (P (s, a) ‖ P ⋆(s, a))

1/K
∑K

k=1 H2
(
P (skh, a

k
h) ‖ P ⋆(skh, a

k
h)
) .

Theorem (Performance gap of CPPO-LR)
For any δ ∈ (0, 1), let β = 4 log(|P|/δ), w.p. at least 1− δ, CPPO-LR learns a
policy π̂ that enjoys the following performance gap with respect to any
comparator policy π∗:

V π∗
− V π̂ ≤ O

(√
Cπ∗VaRπ∗ log(|P|/δ)/K + Cπ∗

log(|P|/δ)/K
)
.
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Horizon-free and Second-order MBRL: Offline Setting

First, our bound is horizon-free (not even any log(H) dependence), while
the previous bound in [2] has poly(H) dependence.
Second, our bound scales with VaRπ∗ ∈ [0, 1], which can be small when
VaRπ∗ � 1.

Corollary (Cπ∗
/K performance gap of CPPO-LR with deterministic

transitions)
When the ground truth transition P ⋆ of the MDP is deterministic, for any
δ ∈ (0, 1), let β = 4 log(|P|/δ), w.p. at least 1− δ, CPPO-LR learns a policy π̂
that enjoys the following performance gap with respect to any comparator
policy π∗:

V π∗
− V π̂ ≤ O

(
Cπ∗

log(|P|/δ)/K
)
.
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Proof Sketch for Online RL

For ease of presentation, we use dRL to denote DE1(Ψ,S ×A, 1/KH),
and ignore some log terms.
Overall, our analysis follows the general framework of optimism in the
face of uncertainty, but with

1 careful analysis in leveraging the MLE generalization bound
2 novel analyses to achieve a variance-dependent bound without estimating

variances
3 a more refined proof in the training-to-testing distribution transfer via

Eluder dimension
4 careful variance recursion analysis.
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Proof Sketch for Online RL

By standard MLE analysis, we can show w.p. 1− δ, for all k ∈ [K − 1],
we have P ⋆ ∈ P̂k, and

k−1∑
i=0

H−1∑
h=0

H2(P ⋆(sih, a
i
h)||P̂ k(sih, a

i
h)) ≤ O(log(K |P| /δ)) . (2)

From here, trivially applying training-to-testing distribution transfer via
the Eluder dimension as previous works would cause poly-dependence on
H.
With some new techniques, we can get: there exists a set K ⊆ [K − 1]
such that |K| ≤ O(dRL log(K|P|/δ)), and∑
k∈[K−1]\K

∑
h

H2
(
P ⋆(skh, a

k
h) ‖ P̂ k(skh, ak

h)
)
≤ O(dRL · log(K |P| /δ) log(KH)) .

(3)
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Proof Sketch for Online RL

Recall that (πk, P̂ k)← argmaxπ∈Π,P∈P̂kV
π
0;P (s0), with the realization

guarantee P ⋆ ∈ P̂k, we can get the following optimism guarantee:
V ⋆
0;P⋆ ≤ maxπ∈Π,P∈P̂k V

π
0;P = V πk

0;P̂k
.

At this stage, one straight-forward way to proceed is to use the standard
simulation lemma:

K−1∑
k=0

V
π⋆

0;P⋆ − V
πk

0;P⋆ ≤
K−1∑
k=0

V
πk

0;P̂k − V
πk

0;P⋆

≤
K−1∑
k=0

H−1∑
h=0

E
s,a∼dπ

k
h

[∣∣∣∣Es′∼P⋆(s,a)V
πk

h+1;P̂k (s
′
) − E

s′∼P̂k(s,a)
V

πk

h+1;P̂k (s
′
)

∣∣∣∣] . (4)

However, from here, if we naively bound each term on the RHS via
E
s,a∼dπk

h

‖P ⋆(s, a)− P̂ k(s, a)‖1, which is what previous works such as [2]
did exactly, we would end up paying a polynomial horizon dependence H
due to the summation over H on the RHS the above expression.
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Proof Sketch for Online RL

We have the following mean-to-variance lemma

Lemma (Lemma 4.3 in [3])
For two distributions f ∈ ∆([0, 1]) and g ∈ ∆([0, 1]):

|Ex∼f [x]− Ex∼g[x]| ≤ 4
√
VaRf ·D△(f ‖ g) + 5D△(f ‖ g). (5)

where VaRf := Ex∼f (x− Ex∼f [x])
2 denotes the variance of the distribution f .

Given this mean-to-variance lemma, we may consider using it to bound
the difference between two means
Es′∼P⋆(s,a)V

πk

h+1;P̂k
(s′)− Es′∼P̂k(s,a)V

πk

h+1;P̂k
(s′).

This still can not work if we start from here, because we would eventually
get

∑
k

∑
h Es,a∼dπk

h

[H2(P ⋆(s, a)||P̂ k(s, a))] terms, which can not be
further upper bounded easily with the MLE generalization guarantee.
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Proof Sketch for Online RL

To achieve horizon-free and second-order bounds, we need a novel and
more careful analysis.
First, we carefully decompose and upper bound the regret in
K̃ := [K − 1] \ K w.h.p. as follows using Bernstain’s inequality (for regret
in K we can simply upper bound it by |K|)

∑
k∈K̃

(
V πk

0;P̂k (s
k
h)−

H−1∑
h=0

r(skh, a
k
h)

)
+
∑
k∈K̃

(
H−1∑
h=0

r(skh, a
k
h)− V πk

0;P⋆

)

≲
√∑

k∈K̃

∑
h

(
VP⋆V πk

h+1;P̂k

)
(skh, a

k
h)

+
∑
k∈K̃

∑
h

∣∣∣Es′∼P̂k(sk
h
,ak

h
)V

πk

h+1;P̂k (s
′)− Es′∼P∗(sk

h
,ak

h
)V

πk

h+1;P̂k (s
′)
∣∣∣

+

√∑
k

VaRπk log(1/δ) . (6)
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Proof Sketch for Online RL

Then, we bound the difference of two means
Es′∼P̂k(skh,a

k
h)
V πk

h+1;P̂k
(s′)− Es′∼P∗(skh,a

k
h)
V πk

h+1;P̂k
(s′) using variances and

the triangle discrimination using the mean-to-variance lemma, together
with the fact that D△ ≤ 4H2, and information processing inequality on
the squared Hellinger distance, we have

|E
s′∼P̂k(sk

h
,ak

h
)
V

πk

h+1;P̂k (s
′
) − E

s′∼P∗(sk
h
,ak

h
)
V

πk

h+1;P̂k (s
′
)|

≤ O
(√(

VP⋆V πk

h+1;P̂k

)
(skh, a

k
h)D△

(
V πk

h+1;P̂k

(
s′ ∼ P⋆(skh, a

k
h)

)
∥ V πk

h+1;P̂k (s
′ ∼ P̂k

(
skh, a

k
h)

))
+ D△

(
V

πk

h+1;P̂k

(
s
′ ∼ P

⋆
(s

k
h, a

k
h)

)
∥ V

πk

h+1;P̂k (s
′ ∼ P̂

k(
s
k
h, a

k
h)

)))
≤ O

(√(
VP⋆V πk

h+1;P̂k

)
(skh, a

k
h)H2

(
P⋆(skh, a

k
h) ∥ P̂k

(
skh, a

k
h)

)
+ H2

(
P

⋆
(s

k
h, a

k
h) ∥ P̂

k(
s
k
h, a

k
h)

))

where we denote V π∗

h+1;P̂
(s′ ∼ P ⋆(s, a)) as the distribution of the random

variable V π∗

h+1;P̂
(s′) with s′ ∼ P ⋆(s, a).

Zhiyong Wang Talk at SJTU May, 2025 22 / 30



Proof Sketch for Online RL

Then, summing up over k, h, with Cauchy-Schwartz and the MLE
generalization bound via Eluder dimension in Eq.(3), we have∑

k∈K̃

∑
h

∣∣∣Es′∼P̂k(sk
h
,ak

h
)V

πk

h+1;P̂k (s
′)− Es′∼P∗(sk

h
,ak

h
)V

πk

h+1;P̂k (s
′)
∣∣∣

≤ O
(∑

k∈K̃

∑
h

H2
(
P ⋆(skh, a

k
h) ‖ P̂ k(skh, ak

h)
)

+

√∑
k∈K̃

∑
h

(
VP⋆V πk

h+1;P̂k

)
(skh, a

k
h)
∑
k∈K̃

∑
h

H2
(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
))

≤ O
(√∑

k∈K̃

∑
h

(
VP⋆V πk

h+1;P̂k

)
(skh, a

k
h)dRL log(K |P| /δ) log(KH)

+ dRL log(K |P| /δ) log(KH)
)
. (7)
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Proof Sketch for Online RL

Note that we have
(
VP⋆V πk

h+1;P̂k

)
(skh, a

k
h) depending on P̂ k. To get a

second-order bound, we need to convert it to the variance under ground
truth transition P ⋆, and we want to do it without incurring any H
dependence.
We aim to replace

(
VP⋆V πk

h+1;P̂k

)
(skh, a

k
h) by

(
VP⋆V πk

h+1

)
(skh, a

k
h) which is

the variance under P ⋆, and we want to control the difference(
VP⋆

(
V πk

h+1;P̂k
− V πk

h+1

) )
(skh, a

k
h). To do so, we need to bound the

variance of the 2m-th moment of the difference V πk

h+1;P̂k
− V πk

h+1.
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Proof Sketch for Online RL

Let us define the following terms:

A :=
∑
k∈K̃

∑
h

[(
VP⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]
, B :=

∑
k∈K̃

∑
h

[(
VP⋆V πk

h+1

)
(skh, a

k
h)
]
,

Cm :=
∑
k∈K̃

∑
h

[(
VP⋆(V πk

h+1;P̂k − V πk

h+1)
2m)(skh, ak

h)
]
,

G :=

√
A · dRL log(

K |P|
δ

) log(KH) + dRL log(
K |P|
δ

) log(KH) .

With the fact VP⋆(a+ b) ≤ 2VP⋆(a) + 2VP⋆(b) we have A ≤ 2B + 2C0.
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Proof Sketch for Online RL

For Cm, we prove that w.h.p. it has the recursive form
Cm ≲ 2mG+

√
log(1/δ)Cm+1 + log(1/δ), during which process we also

leverage the above Eq.(7) and some careful analysis.
Then, with a recursion lemma, we can get C0 ≲ G, which further gives us

A ≲ B + dRL log(
K |P|
δ

) log(KH) +

√
A · dRL log(

K |P|
δ

) log(KH)

≤ O
(
B + dRL log(

K |P|
δ

) log(KH)
)
,

where in the last step we use the fact x ≤ 2a+ b2 if x ≤ a+ b
√
x.

Finally, we note that B ≤ O(
∑

k VaRπk + log(1/δ)) w.h.p.. Plugging the
upper bound of A back into Eq.(7) and then to Eq.(6), we conclude the
proof.
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Horizon-free and Second-order MBRL: Summary

Overall, our work identifies the minimalist algorithms
and analysis for nearly horizon-free and second-order
online & offline RL.
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Horizon-free and Second-order MBRL: Summary

There are some interesting future works:
1 Remove the logH dependence (completely horizon-free).
2 Extend our analysis to incorporate the richer function classes with small

distributional Eduler dimensions.
3 The algorithms studied in this work are not computationally tractable.

This is due to the need of performing optimism/pessimism planning.
Deriving computationally tractable RL algorithms for the rich function
approximation setting is a long-standing question.
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Thank you!
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