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The primary goal of my research is to develop provably effi-
cient and practical algorithms for data-driven online sequential
decision-making under uncertainty. My work focuses on rein-
forcement learning (RL), multi-armed bandits, and their appli-
cations, including recommendation systems, computer networks,
video analytics, and large language models (LLMs). Online learn-
ing methods, such as bandits and RL, have demonstrated remark-
able success—ranging from outperforming human players in com-
plex games like Atari and Go to advancing robotics, recommen-
dation systems, and fine-tuning LLMs.

Despite these successes, many established algorithms rely on
idealized models that can fail under model misspecifications or
adversarial perturbations, particularly in settings where accurate
prior knowledge of the underlying model class is unavailable or
where malicious users operate within dynamic systems. These
challenges are pervasive in real-world applications, where robust
and adaptive solutions are critical. Furthermore, while worst-
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case guarantees provide theoretical reliability, they often fail to
capture instance-dependent performance, which can lead to more
efficient and practical solutions. Another key challenge lies in
generalizing to new, unseen environments, a crucial requirement
for deploying these methods in dynamic and unpredictable set-
tings. To address these important issues, my research aims to
address these limitations by driving the field toward

more efficient, robust, instance-adaptive, and
generalizable online learning.

Towards this end, I focus on developing more efficient, robust,
instance-adaptive, and generalizable for both general reinforce-
ment learning (RL) and bandits.
1. Efficient, Instance-adaptive, and Generalizable Rein-
forcement Learning: Reinforcement Learning (RL) has achieved
significant breakthroughs in various applications, from game play-
ing to autonomous systems. However, two major challenges per-
sist in the field: developing algorithms that provide efficient,
instance-adaptive performance guarantees and ensuring that these
algorithms can generalize effectively to new, unseen environments.
Current state-of-the-art RL methods often rely on worst-case per-
formance analyses, which can be overly conservative and fail to
leverage the specific structure of individual problems. Addition-
ally, many RL algorithms struggle with generalization, particu-
larly in offline settings where the agent must perform well in en-
vironments that differ from the training data. Addressing these
challenges is crucial for advancing RL theory and enabling its
application in more complex and dynamic real-world scenarios.
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I proved that surprisingly standard model-based RL approaches
can achieve horizon-free and variance-dependent regret bounds
[1], contributing significantly to the RL theory community by
identifying the simplest approach for achieving such tight bounds
in large-scale online and offline RL problems with general function
approximation. Furthermore, I made substantial contributions
to the area of zero-shot generalization in offline RL [2]. Previ-
ous empirical works [3] demonstrated that standard offline RL
algorithms struggle to generalize to new, unseen environments. I
initiated the first theoretical analysis in this area, identifying the
causes of these failures and proposing provably efficient offline
RL algorithms that address these challenges, which are supported
by significant improvements in large-scale experiments over prior
methods. Details are as follows.

• Minimalist Approach to Horizon-Free and Second-
Order Bounds [1]: We are the first to identify the mini-
malist algorithms and analyses to achieve horizon-free and
instance-dependent (second-order) bounds for both online
and offline RL with general function approximations. “Horizon-
free” implies that our bounds do not depend polynomially
on the Markov Decision Process horizon. Our second-order
bounds scale with the variances of the policy returns, which
can be small when the system is nearly deterministic or the
optimal policy has small values. These bounds offer signifi-
cant tight and instance-dependent theoretical guarantees for
efficient RL. This work was recently selected as a reference in
Cornell’s CS 6789: Foundations of Reinforcement Learning
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course.

• Zero-Shot Generalization in Offline RL [2]: We stud-
ied offline RL with zero-shot generalization (ZSG), where the
agent accesses an offline dataset from various environments
and aims to perform well on unseen test environments with-
out further interaction. We proposed novel frameworks to
find near-optimal policies with ZSG, providing both nearly
optimal theoretical guarantees (tight upper bounds of subop-
timality gaps) and empirical validations (significant outper-
formance over previous offline RL methods on the real-world
Procgen dataset). Our frameworks represent a significant
advancement in understanding and enhancing generalization
in offline reinforcement learning.

2. Efficient, Robust, and Instance-adaptive Multi-armed
Bandits: Multi-armed bandits (MAB) are fundamental tools for
sequential decision-making under uncertainty, with widespread
applications in areas such as recommendation systems, online ad-
vertising, and user engagement. However, existing algorithms
often struggle in real-world scenarios involving model misspecifi-
cations, adversarial corruptions, or dynamic environments, mak-
ing the development of efficient and robust methods a critical
research direction.

I have made significant contributions towards more efficient,
robust, and instance-adaptive multi-armed bandit algorithms, par-
ticularly for real-world applications like recommendation systems.
I designed provably efficient large-scale bandit algorithms that are
robust to model misspecifications [4], adversarial corruptions [5],
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and preference feedback [6], scenarios where classic algorithms
often fail. Motivated by real-world applications of bot detection
proposed by my collaborators at Adobe Research, I also pioneered
the study of online detection of malicious users in dynamic sys-
tems [5], an important but open research area. Additionally, I
have contributed to the field of conversational contextual ban-
dits, which are widely applied to conversational recommendation
systems [7, 8, 9]. Details are as follows.

• Robust Clustering in Bandits [4]: Clustering of bandits
(CB) utilizes similarities over user preferences and has shown
significant success in large-scale recommender systems. We
addressed the limitations of existing CB algorithms that re-
quire well-specified linear user models. We developed ro-
bust CB algorithms accommodating inaccurate user pref-
erence estimations and erroneous clustering due to model
misspecifications. Our algorithms achieve tight regret upper
bounds matching the lower bounds up to logarithmic factors
and have significant empirical improvements in real-world
datasets for recommendation systems.

• Online Malicious User Detection [5]: Recognizing chal-
lenges such as click fraud, fake reviews, and bot detection, we
introduced a novel online learning problem named LOCUD.
Our work is the first to address the dual objectives of per-
forming online detection of malicious users and minimizing
regret by learning and leveraging unknown user relations in-
ferred from disrupted behaviors. We proposed general frame-
works that demonstrate both strong theoretical guarantees
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—nearly optimal regret bounds and tight detection accu-
racy—and robust experimental performance, achieving high
rewards in recommender systems and online detection ac-
curacy comparable to state-of-the-art offline deep learning-
based methods.

• Conversational Contextual Bandits [7, 8, 9]: We ex-
plored conversational contextual bandits, which accelerate
learning in recommendation systems by eliciting user prefer-
ences through occasional queries for explicit feedback on key
terms. We proposed the ConLinUCB framework, achieving
better incorporation of arm-level and key-term-level feed-
back. Our algorithms, ConLinUCB-BS and ConLinUCB-
MCR, achieve state-of-the-art performance both theoreti-
cally and empirically (up to 54% improvement in learning
accuracy and up to 72% improvement in computational ef-
ficiency over previous SOTA methods) [7]. We also studied
various different settings and proposed corresponding robust
algorithms for conversational bandits [8, 9].

• Variance-Adaptive Regret in Non-Stationary Ban-
dits [10]: We investigated non-stationary stochastic linear
bandits with evolving reward distributions. We proposed
algorithms that utilize the variance of the reward distribu-
tion, introducing Restarted WeightedOFUL+ and Restarted
SAVE+, which achieve variance-dependent bounds. When
the total variance VK is smaller than the total round K, our
algorithms outperform previous state-of-the-art results.
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• Clustering of Bandits with Preference Feedback [6]:
We introduce the first ”clustering of dueling bandit algo-
rithms” to enable collaborative decision-making based on
preference feedback. We propose two novel algorithms: (1)
Clustering of Linear Dueling Bandits (COLDB) which mod-
els the user reward functions as linear functions of the con-
text vectors, and (2) Clustering of Neural Dueling Bandits
(CONDB) which uses a neural network to model complex,
non-linear user reward functions. Both algorithms are sup-
ported by rigorous theoretical analyses, demonstrating that
user collaboration leads to improved regret bounds. Ex-
tensive empirical evaluations on synthetic and real-world
datasets further validate the effectiveness of our methods.

• Other Collaborative Works [11, 12, 13, 14, 15]: I also
contributed to projects on applications of bandits in com-
puter networks for adaptive congestion control [11], theory
of combinatorial bandits [13], federated bandits for recom-
mendation systems [14], and the safety study of adversar-
ial attacks on bandits [15], broadening the impact of online
learning methods in these domains.
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論文題目 ： 更高效、更穩健、具實例自適應性與泛化能力
的線上學習

作者 ： 王智勇
學校 ： 香港中文大學
學系 ： 計算機科學與工程學系
修讀学位 ： 哲學博士
摘要 ：

我的研究主要目標是設計具理論保證且實用的演算法，用
於不確定性下的數據驅動線上序列決策。我專注於強化學
習（Reinforcement Learning, RL）、多臂老虎機（Multi-armed
Bandits, 多臂老虎機）以及其在推薦系統、電腦網路、影像分
析與大型語言模型（Large Language Models, LLMs）等應用領
域。線上學習方法（如多臂老虎機與 RL）已在眾多場景中展現
驚人成效——從在 Atari 與圍棋等複雜遊戲中超越人類玩家，到
推動機器人技術、推薦系統及大型語言模型的精調等應用。
儘管已有這些成功，許多現有演算法仍依賴理想化的模型假

設，這些假設在模型錯置（misspecification）或對手擾動下可能
失效，特別是在難以獲得正確模型先驗知識的環境或在惡意使
用者存在的動態系統中。這些挑戰在真實應用中普遍存在，因
此穩健與自適應的解決方案至關重要。此外，儘管最壞情形理
論保證具備理論可靠性，但其往往無法反映樣本實例的特徵，
從而限制了效率與實用性。另一個關鍵挑戰是如何對新環境進
行泛化，這是將這些方法部署於動態與不可預測情境中的必要
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條件。為解決上述挑戰，我的研究目標是推動該領域邁向：

更高效、更穩健、具實例自適應性與泛化能力的線上學習

因此，我針對強化學習與多臂老虎機兩大類問題，設計具備
上述四種性質的演算法。
1. 高效、自適應並具泛化能力的強化學習：強化學習（RL）在
從遊戲到自動化系統的多項應用中取得突破性成果。但現階段
仍面臨兩大挑戰：一是設計具實例自適應性與高效率的演算法，
二是確保這些演算法能有效泛化至新環境。現有 RL 方法多仰
賴最壞情形分析，往往過於保守，無法有效利用具體問題的結
構特性。此外，許多 RL 演算法在離線設定下難以泛化，導致
在測試環境表現不佳。解決這些問題對於推動 RL 理論與實踐
至關重要。
我證明，即便是標準的模型式 RL 方法，也能實現無視時間

尺度（horizon-free）與變異數相關（variance-dependent）的遺
憾界限（regret bound）[1]。此成果為 RL 理論社群帶來重要貢
獻，證明即使是最簡的演算法，在大規模的線上與離線 RL 問
題下也能達到緊緻的界限。此外，我也對離線 RL 中的零樣本
泛化問題（zero-shot generalization）做出重要貢獻 [2]。過去的
實證研究指出標準 RL 難以泛化 [3]，我首次從理論角度分析此
問題，並提出具理論保證且在大型實驗中顯著優於現有方法的
解決方案。具體成果如下：

• 簡約方法實現無視時間與次序界限 [1]：我們首度識別出
一種極簡分析框架與演算法，能針對具有函數逼近的一般
RL 問題實現無 horizon 與實例自適應的次序界限（second-
order bounds）。無 horizon 意味著界限與 MDP 的時間長
度無關，而次序界限會依據策略回報的變異程度縮放，特
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別當系統近乎確定性或最優策略回報值很小時界限更緊。
此成果已被康乃爾大學 CS 6789 課程指定為參考資料。

• 離線強化學習的零樣本泛化 [2]：我們研究了離線 RL 中的
零樣本泛化（ZSG）問題，代理只從不同環境的資料集中
學習，需在未知測試環境中直接執行。我們提出新的架構
與理論保證（子最優性差距的上限），並在大型真實資料集
（如 Procgen）上顯著優於前人方法。

2. 高效、穩健且自適應的多臂老虎機方法：多臂老虎機問題是
處理不確定性下序列決策的核心方法，廣泛應用於推薦系統、
線上廣告與使用者互動分析等領域。但現有演算法在面對模型
錯置、對手擾動與非平穩環境時表現不佳，因此設計穩健且有
效的演算法尤為關鍵。
我針對上述問題提出多項具理論保證且兼具實用性的多臂老

虎機演算法，特別針對推薦系統的應用。我設計了可處理模型
錯置 [4]、對手破壞 [5] 及偏好回饋 [6] 等場景下仍具有效率的演
算法，並首度探討動態系統中惡意使用者的即時偵測 [5]，這是
現實中重要但未充分研究的問題。我亦參與了會話式多臂老虎
機問題的研究，廣泛應用於交互式推薦系統中 [7, 8, 9]。具體成
果如下：

• 多臂老虎機聚類的穩健性 [4]：我們研究了多臂老虎機聚類
（Clustering of Bandits, CB）方法，該方法透過使用者偏好
間的相似性來提升推薦效果。我們提出能容忍模型錯置與
錯誤聚類的穩健演算法，並給出對應理論遺憾上限與實驗
驗證。

• 線上惡意使用者偵測 [5]：面對點擊詐欺、假評論與機器人
等行為，我們提出 LOCUD 問題並首次處理雙重目標：一
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是識別惡意使用者，二是降低決策遺憾。我們提出具理論
與實驗保證的通用架構，在推薦系統中同時達到高獎勵與
接近離線深度學習方法的偵測精度。

• 會話式多臂老虎機 [7, 8, 9]：我們研究會話式多臂老虎
機問題，透過詢問使用者關鍵字以加速偏好學習。我們
提出 ConLinUCB 架構，整合 arm 與關鍵詞回饋，提出
ConLinUCB-BS 與 ConLinUCB-MCR 等方法，在學習精
度與運算效率上顯著優於現有方法。

• 變異數適應的非平穩多臂老虎機 [10]：我們研究非平穩線
性多臂老虎機問題，提出能利用獎勵變異特性的演算法，
包括 Restarted WeightedOFUL+ 與 Restarted SAVE+，在
變異總量 VK < K 的情況下顯著優於前人結果。

• 具偏好回饋的多臂老虎機聚類 [6]：我們首度研究具偏好回
饋的多臂老虎機聚類，提出 COLDB（線性偏好）與 CONDB
（神經網路偏好）兩大架構，並證明在合作決策下可獲得更
小遺憾，並在合成與真實資料集上有顯著實驗成果。

• 其他合作研究 [11, 12, 13, 14, 15]：我也參與多個應用場景
的多臂老虎機研究，包括電腦網路擁塞控制 [11]、組合多
臂老虎機理論 [13]、聯邦式多臂老虎機推薦 [14] 與安全性
分析 [15]，擴展了線上學習方法的應用廣度。
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Chapter 1

Introduction

Online learning methods—such as reinforcement learning (RL)
and multi-armed bandits (MAB)—have achieved remarkable progress
across a broad range of applications. These include surpassing
human-level performance in complex games like Atari and Go,
driving breakthroughs in robotics, powering large-scale recom-
mendation systems, and facilitating the fine-tuning of large lan-
guage models (LLMs).

Nevertheless, despite these advances, many state-of-the-art al-
gorithms are designed under idealized assumptions, which can be
fragile in the face of model misspecifications or adversarial per-
turbations. Such assumptions—often involving prior knowledge
of the model class or environment stationarity—rarely hold in
practice, particularly in dynamic systems influenced by unknown
or even malicious factors. This disconnect between theoretical
assumptions and practical realities calls for the development of
algorithms that are both robust and adaptive to unforeseen con-
ditions.

Moreover, worst-case theoretical guarantees, while valuable

1



1.1. MODEL-BASED RL AS A MINIMALIST APPROACH TO HORIZON-FREE AND SECOND-ORDER BOUNDS2

for providing general reliability, often overlook the performance
advantages that can be gained from exploiting instance-specific
structure. Such conservatism may result in inefficient learning in
practice. A further key challenge is generalization—the ability to
extend what is learned in the training phase to unseen environ-
ments or tasks. This ability is essential for deploying learning
systems in real-world scenarios that are dynamic, partially ob-
servable, or fundamentally different from the training conditions.

Motivated by these critical issues, this thesis aims to address
them by advancing the field toward:

more efficient, robust, instance-adaptive, and
generalizable online learning.

To this end, we focus on developing theoretical foundations
and algorithms for both reinforcement learning and multi-armed
bandits that embody these four properties. Below, we outline the
major research problems tackled in this thesis.

1.1 Model-based RL as a Minimalist Approach
to Horizon-Free and Second-Order Bounds

Model-based reinforcement learning (MBRL) typically involves
two steps: first, learning a model of the environment’s transition
dynamics using collected data; second, performing planning or
policy optimization within the learned model. This paradigm is
attractive due to its simplicity and has been successfully applied
to a wide array of real-world domains such as control and robotics
(e.g., [16, 17, 18, 19, 20, 21, 22]).
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The simplicity of MBRL also lends itself to theoretical analy-
sis. Prior work has studied its performance in both online RL [23]
and offline RL [24] settings. For instance, [25] showed that in the
classic linear quadratic regulator (LQR) setting, the basic model-
fitting and planning scheme enjoys strong performance guaran-
tees. Similarly, [26] demonstrated that when optimism is incor-
porated, MBRL achieves solid sample complexity bounds for on-
line RL with rich function classes. In the offline case, [24] showed
that pessimism-augmented MBRL can provide robust guarantees,
while [27] further established its effectiveness in hybrid settings
involving both online and offline data, even without explicit op-
timism or pessimism mechanisms.

Rather than proposing newMBRL algorithms, this thesis shows
that the standard MBRL approach—using Maximum Likelihood
Estimation (MLE) for model fitting, combined with optimistic or
pessimistic planning (depending on whether the setting is online
or offline)—already achieves strong theoretical results. Specifi-
cally, under the conditions where the trajectory-level reward is
normalized and transitions are time-homogeneous, these algo-
rithms can yield nearly horizon-free and instance-dependent re-
gret and sample complexity bounds even in the presence of gen-
eral, non-linear function approximation.

Nearly horizon-free bounds imply that the regret or sample
complexity does not scale polynomially with the time horizon H,
suggesting that long-term planning is not necessarily the bottle-
neck for statistical efficiency. For instance-dependent analysis,
we focus on second-order bounds, where regret scales with the
variance of policy returns and directly implies first-order bounds
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as a special case. This leads to significantly smaller regret when
the environment is nearly deterministic or when the optimal pol-
icy has low return variance. In the case of deterministic transi-
tions (which the algorithm does not need to know in advance),
we demonstrate that these algorithms can converge faster than
what worst-case analysis would suggest.

Simple and standard MLE-based MBRL algorithms are sufficient
for achieving nearly horizon-free and second-order bounds in

online and offline RL with function approximation.

1.2 Provable Zero-Shot Generalization in Of-
fline Reinforcement Learning

Offline RL has become an increasingly vital framework as it en-
ables learning policies from fixed datasets without requiring direct
interaction with the environment. However, in practical deploy-
ments, the training dataset often comes from environments that
differ from the ones where the policy will ultimately be applied.
This leads to the need for zero-shot generalization (ZSG), where
an agent is trained on a finite number of environments sampled
from a distribution and then evaluated on previously unseen envi-
ronments—without access to additional interactions. This prob-
lem has been explored in the online RL literature [28, 29, 30, 31,
32, 33], but remains under-theorized in the offline setting.

Although recent empirical studies [3, 34, 35] have tackled this
problem by proposing various ZSG-capable methods, most suffer
from strong limitations. Some methods work only when environ-
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ment differences are restricted to observations [35], while others
reduce to imitation learning setups [34], limiting their generality.
On the theoretical front, multi-task offline RL approaches [36, 37]
leverage shared representations but rely on access to downstream
interactions, thus deviating from the offline ZSG formulation.

This motivates the central question:

Can we design provable offline RL algorithms that support
zero-shot generalization?

To this end, we develop novel algorithmic frameworks for of-
fline RL that deliver provable ZSG guarantees and significantly
outperform prior methods in large-scale experiments.

1.3 Online Clustering of Bandits with Misspec-
ified User Models

Stochastic multi-armed bandits (MAB) are foundational models
for sequential decision-making under uncertainty. In each round,
a learning agent selects an action and observes a corresponding re-
ward, with the goal of maximizing cumulative rewards. They are
widely adopted in applications such as recommendation systems
and network optimization [38, 39, 7, 40].

To handle complex settings, contextual linear bandits incorpo-
rate side information, modeling expected rewards as linear func-
tions of observed features. These methods enable personalization
in large-scale systems [41, 42, 43, 44, 45], but do not exploit simi-
larities among users. Clustering of bandits (CB) addresses this by
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adaptively grouping users and sharing information across clusters
[46].

However, prior CB methods assume perfectly linear reward
models and identical preferences within clusters. This fails to
reflect real-world variation caused by noise or user heterogene-
ity [47, 48]. To overcome this, we introduce clustering of bandits
with misspecified user models (CBMUM), where users in the same
cluster share a linear reward component but have individual de-
viations that better capture diverse behaviors.

1.4 Online Corrupted User Detection and Re-
gret Minimization

In online recommendation platforms, user data arrives sequen-
tially, and some users may behave adversarially—through click
fraud, fake reviews, or coordinated disruptions. These corrupted
signals can degrade the system’s performance by misleading pref-
erence estimations [49, 50, 51, 52, 53].

Prior bandit algorithms with corruption tolerance are limited
to single-user settings [49, 53, 54], and offline user detection ap-
proaches [55, 56, 57] cannot operate dynamically in streaming
scenarios.

We propose a novel learning framework called Learning and
Online Corrupted Users Detection (LOCUD), which simultane-
ously performs preference learning, cluster inference, and online
anomaly detection under potential adversarial corruption. This
setting models latent user clusters and assumes only a minority of
users are corrupted. The algorithm aims to maximize reward and
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detect corrupted users on the fly—despite dynamic and partially
adversarial behavior.

1.5 Online Clustering of Dueling Bandits

In many applications like recommendation and prompt tuning for
LLMs, it is more realistic to obtain relative feedback (i.e., prefer-
ences) instead of absolute scores. Dueling bandits formalize this
feedback mode by asking users to compare two options. Classi-
cal dueling bandit algorithms, however, do not incorporate user
collaboration.

We introduce the first clustering of dueling bandits framework,
which enables adaptive user grouping in preference-feedback en-
vironments. This approach combines pairwise comparison mod-
eling with collaborative structure, expanding the applicability of
contextual dueling bandits [58, 59, 60].

1.6 Efficient Explorative Key-term Selection
Strategies for Conversational Contextual
Bandits

Conversational recommender systems (CRS) improve learning ef-
ficiency by eliciting user preferences through occasional interac-
tions involving explicit feedback on key terms [61, 62]. Existing
conversational bandit methods treat feedback from different levels
independently and lack effective strategies to select informative
key terms.
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We propose ConLinUCB, a unified framework that jointly in-
tegrates key-term and arm-level feedback into a single estima-
tion process. Within this framework, we design two explorative
strategies: ConLinUCB-BS, which samples from a barycentric
spanner of key terms, and ConLinUCB-MCR, which selects key
terms based on confidence radius to maximize exploration. These
methods significantly improve the speed and quality of recommen-
dation.

1.7 Variance-Dependent Regret Bounds for Non-
stationary Linear Bandits

In non-stationary linear bandits, the expected reward functions
change over time. Most existing approaches focus on bounding
regret in terms of total variation in reward means (e.g., BK), but
ignore the influence of reward variance.

We propose new algorithms that exploit both mean drift and
variance information to produce regret bounds that scale more
favorably in heteroscedastic environments. This advancement is
motivated by real-world applications like hyperparameter tuning
in physical systems, where the noise profile depends on the eval-
uation point. Our methods demonstrate that variance-awareness
can yield sharper bounds and better adaptivity in non-stationary
settings.



Chapter 2

Literature Review

In this chapter, we summarize previous researches that are related
to this thesis and differentiate our results from theirs.

2.1 Model-based RL

Learning transition models with function approximation and plan-
ning with the learned model is a standard approach in RL and
control. In the control literature, certainty-equivalence control
learns a model from some data and plans using the learned model,
which is simple but effective for controlling systems such as Lin-
ear Quadratic Regulators (LQRs) [25]. In RL, such a simple
model-based framework has been widely used in theory with rich
function approximation, for online RL [23, 63, 64, 65, 66, 26, 67],
offline RL [24], RL with representation learning [68, 69], and hy-
brid RL using both online and offline data for model fitting [27].
Our work builds on the maximum-likelihood estimation (MLE)
approach, a standard method for estimating transition models in
model-based RL.

9
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2.2 Horizon-free and Instance-dependent bounds

Most existing works on horizon-free RL typically focus on tab-
ular settings or linear settings. For instance, [70] firstly studied
horizon-free RL for tabular MDPs and proposed an algorithm
that depends on horizon logarithmically. Several follow-up work
studied horizon-free RL for tabular MDP with better sample com-
plexity [71], offline RL [72], stochastic shortest path [73] and RL
with linear function approximation [74, 75, 76, 77, 78, 79, 80].
Note that all these works have logarithmic dependence on the
horizon H. For the tabular setting, recent work further improved
the regret or sample complexity to be completely independent
of the horizon (i.e., removing the logarithmic dependence on the
horizon) [81, 82] with a worse dependence on the cardinality of
state and action spaces |S| and |A|. To compare with, we show
that simple MBRL algorithms are already enough to achieve com-
pletely horizon-free (i.e., no log dependence) sample complexity
for offline RL when the transition model class is finite, and we
provide a simpler approach to achieve the nearly horizon-free re-
sults for tabular MDPs, compared with [71]. A recent work [83]
also studied the horizon-free and instance-dependent online RL
in the function approximation setting with small Eluder dimen-
sions. They estimated the variances to conduct variance-weighted
regression. To compare, in our online RL part, we use the simple
and standard MLE-based MBRL approach and analysis to get
similar guarantees. A more recent work also studied horizon-free
behavior cloning [84], which is different from our settings.
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2.3 Offline RL

Offline reinforcement learning (RL) [85, 86, 87, 88] addresses the
challenge of learning a policy from a pre-collected dataset with-
out direct online interactions with the environment. A central
issue in offline RL is the inadequate dataset coverage, stemming
from a lack of exploration [88, 89]. A common strategy to ad-
dress this issue is the application of the pessimism principle,
which penalizes the estimated value of under-covered state-action
pairs. Numerous studies have integrated pessimism into vari-
ous single-environment offline RL methodologies. This includes
model-based approaches [90, 24, 91, 92, 93, 69, 94], model-free
techniques [95, 96, 97, 98, 99], and policy-based strategies [100,
101, 102, 103]. [104] has observed that with sufficient offline data
diversity and coverage, the need for pessimism to mitigate ex-
trapolation errors and distribution shift might be reduced. To
the best of our knowledge, we are the first to theoretically study
the generalization ability of offline RL in the contextual MDP
setting.

2.4 Generalization in online RL

There are extensive empirical studies on training online RL agents
that can generalize to new transition and reward functions [28,
29, 30, 31, 32, 33, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122]. They use techniques
including implicit regularization [118], data augmentation [120,
121], uncertainty-driven exploration [122], successor feature [123],
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etc. These works focus mostly on the online RL setting and do
not provide theoretical guarantees, thus differing a lot from ours.
Moreover, [123] has studied zero-shot generalization in offline RL,
but to unseen reward functions rather than unseen environments.

There are also some recent works aimed at understanding on-
line RL generalization from a theoretical perspective. [124] ex-
amined a specific class of reparameterizable RL problems and
derived generalization bounds using Rademacher complexity and
the PAC-Bayes bound. [125] established lower bounds and intro-
duced efficient algorithms that ensure a near-optimal policy for
deterministic MDPs. A recent work [126] studied how much pre-
training can improve online RL test performance under different
generalization settings. To the best of our knowledge, no pre-
vious work exists on theoretical understanding of the zero-shot
generalization of offline RL.

Our paper is also related to recent works studying multi-task
learning in reinforcement learning (RL) [127, 128, 129, 130, 131,
36, 37, 132, 133], which focus on transferring the knowledge
learned from upstream tasks to downstream ones. Additionally,
these works typically assume that all tasks share similar transi-
tion dynamics or common representations while we do not. Mean-
while, they typically require the agent to interact with the down-
stream tasks, which does not fall into the ZSG regime.

2.5 Online Clustering of Bandits (CB)

The paper [46] first formulates the CB problem and proposes a
graph-based algorithm. The work [134] further considers lever-
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aging the collaborative effects on items to guide the clustering of
users. The work [135] considers the CB problem in the cascad-
ing bandits setting with random prefix feedback. The paper [136]
also considers users with different arrival frequencies. A recent
work [137] proposes the setting of clustering of federated bandits,
considering both privacy protection and communication require-
ments. However, all these works assume that the reward model
for each user follows a perfectly linear model, which is unrealistic
in many real-world applications. To the best of our knowledge,
this paper is the first work to consider user model misspecifica-
tions in the CB problem.

2.6 Misspecified Linear Bandits (MLB)

The work [48] first proposes the misspecified linear bandits (MLB)
problem, shows the vulnerability of linear bandit algorithms un-
der deviations, and designs an algorithm RLB that is only ro-
bust to non-sparse deviations. The work [138] proposes two al-
gorithms to handle general deviations, which are modifications of
the phased elimination algorithm [139] and LinUCB [43]. Some
recent works [140, 141] use model selection methods to deal with
unknown exact maximum model misspecification level. Note that
the work [141] has an additional assumption on the access to an
online regression oracle, and the paper [140] still needs to know
an upper bound of the unknown exact maximum model deviation
level. None of them consider the CB setting with multiple users,
thus differing from ours.



2.7. BANDITS WITH ADVERSARIAL CORRUPTION 14

2.7 Bandits with Adversarial Corruption

The work [49] first studies stochastic bandits with adversarial
corruption, where the rewards are corrupted with the sum of cor-
ruption magnitudes in all rounds constrained by the corruption
level C. They propose a robust elimination-based algorithm. The
paper [53] proposes an improved algorithm with a tighter regret
bound.

The paper [54] first studies stochastic linear bandits with ad-
versarial corruptions. To tackle the contextual linear bandit set-
ting where the arm set changes over time, the work [142] proposes
a variant of the OFUL [43] that achieves a sub-linear regret. A
recent work [51] proposes the CW-OFUL algorithm that achieves
a nearly optimal regret bound. All these works focus on design-
ing robust bandit algorithms for a single user; none consider how
to robustly learn and leverage the implicit relations among po-
tentially corrupted users for more efficient learning. Moreover,
none of them consider how to online detect corrupted users in the
multiple-user case.

2.8 Dueling Bandits and Neural Bandits

Dueling bandits has been receiving growing attention over the
years since its introduction [143, 144, 58] due to the prevelance of
preference or relative feedback in real-world applications. Many
earlier works on dueling bandits have focused on MAB problems
with a finte number of arms [145, 146, 147, 148, 149, 150, 151,
152, 153, 154]. More recently, contextual dueing bandits, which
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model the reward function using a parametric function of the
features of the arms, have attracted considerable attention [155,
156, 157, 158, 159, 60].

To apply MABs to complicated real-world applications with
non-linear reward functions, neural bandits have been proposed
which use a neural network to model the reward function [160,
161]. Recently, we have witnessed a significant growing interest
in further improving the theoretical and empirical performance of
neural bandits and applying it to solve real-world problems [162,
163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
177]. In particular, the work of [178] has adopted a neural network
as a meta-learner for adapting to users in different clusters within
the framework of clustering of bandits, and the work of [60] has
combined neural bandits with dueling bandits.

2.9 Conversational Contextual Bandits

Contextual linear bandit is an online sequential decision-making
problem where at each time step, the agent has to choose an
action and receives a corresponding reward whose expected value
is an unknown linear function of the action [41, 42, 43, 179]. The
objective is to collect as much reward as possible in T rounds.

Traditional linear bandits need extensive exploration to cap-
ture the user preferences in recommender systems. To speed up
online recommendations, the idea of conversational contextual
bandits was first proposed in [62], where conversational feedback
on key-terms is leveraged to assist the user preference elicitation.
In that work, they propose the ConUCB algorithm with a theo-
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retical regret bound of O(d
√
T logT ). Some follow-up works try

to improve the performance of ConUCB with the help of addi-
tional information, such as self-generated key-terms [180], relative
feedback [181], and knowledge graph [182]. Unlike these works,
we adopt the same problem settings as ConUCB and improve
the underlying mechanisms without relying on additional infor-
mation. Yet one can use the principles of efficient information in-
corporation and explorative conversations proposed in this work
to enhance these works when additional information is available,
which is left as an interesting future work.

2.10 Non-stationary (Linear) Bandits

There have been a series of works about non-stationary bandits
[183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201].

In non-stationary linear bandits, the unknown feature vector
θk can be dynamically and adversarially adjusted, with the total
change upper bounded by the total variation budget BK over K
rounds, i.e.,

∑K−1
k=1 ‖θk+1 − θk‖2 ≤ BK . To tackle this problem,

some works proposed forgetting strategies such as sliding win-
dow, restart, and weighted regression [187, 188, 192]. [193] also
introduced the randomized exploration with weighting strategy.
The regret upper bounds in these works are all of Õ(B

1
4

KK
3
4 ). A

recent work by [194] proposed the MASTER-OFUL algorithm
based on a black-box approach, which can achieve a regret bound
of Õ(B

1
3

KK
2
3 ) in the case where the arm set is fixed over K rounds.

To the best of our knowledge, none of the existing works con-
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sider how to utilize the variance information to improve the regret
bound in the case with time-dependent variances. The only ex-
ception of utilizing the variance information in the non-stationary
bandit setting is [186], which proposed the Rerun-UCB-V algo-
rithm for the non-stationary MAB setting with a regret depen-
dent on the action set size |A|. To compare with, the regret
upper bounds of our algorithms are independent of the action set
size, thus our algorithms are more efficient for the case where the
number of actions is large.

2.11 Linear Bandits with Heteroscedastic Noises

Some recent works study the heteroscedastic linear bandit prob-
lem, where the noise distribution is assumed to vary over time.
[202] first proposed the linear bandit model with heteroscedastic
noise. In this model, the noise at round k ∈ [K] is assumed to
be σk-sub-Gaussian. Some follow-up works relaxed the σk-sub-
Gaussian assumption by assuming the noise at the k-th round to
be of variance σ2

k [203, 75, 74, 76, 204, 80]. Specifically, [203] and
[76] considered the case where σk is observed by the learner after
the k-th round. [75] and [74] proposed statistically efficient but
computationally inefficient algorithms for the unknown-variance
case. A recent work by [80] proposed an algorithm that achieves
both statistical and computational efficiency in the unknown-
variance setting. [204] also considered a specific heteroscedastic
linear bandit problem where the linear model is sparse.



Chapter 3

Model-based RL as a Minimalist
Approach to Horizon-Free and
Second-Order Bounds

Learning a transition model via Maximum Likelihood Estima-
tion (MLE) followed by planning inside the learned model is per-
haps the most standard and simplest Model-based Reinforcement
Learning (RL) framework. In this work, we show that such a
simple Model-based RL scheme, when equipped with optimistic
and pessimistic planning procedures, achieves strong regret and
sample complexity bounds in online and offline RL settings. Par-
ticularly, we demonstrate that under the conditions where the
trajectory-wise reward is normalized between zero and one and
the transition is time-homogenous, it achieves nearly horizon-free
and second-order bounds. This chapter is based on our publica-
tion [1].

18
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3.1 Introduction

The framework of model-based Reinforcement Learning (RL) of-
ten consists of two steps: fitting a transition model using data
and then performing planning inside the learned model. Such a
simple framework turns out to be powerful and has been used ex-
tensively in practice on applications such as robotics and control
(e.g., [16, 17, 18, 19, 20, 21, 22]).

The simplicity of model-based RL also attracts researchers to
analyze its performance in settings such as online RL [23] and of-
fline RL [24]. [25] showed that this simple scheme — fitting model
via data followed by optimal planning inside the model, has a
strong performance guarantee under the classic linear quadratic
regulator (LQR) control problems. [26] showed that this simple
MBRL framework when equipped with optimism in the face of
the uncertainty principle, can achieve strong sample complexity
bounds for a wide range of online RL problems with rich func-
tion approximation for the models. For offline settings where
the model can only be learned from a static offline dataset, [24]
showed that MBRL equipped with the pessimism principle can
again achieve robust performance guarantees for a large family of
MDPs. [27] showed that in the hybrid RL setting where one has
access to both online and offline data, this simple MBRL frame-
work again achieves favorable performance guarantees without
any optimism/pessimism algorithm design.

In this work, we do not create new MBRL algorithms, in-
stead, we show that the extremely simple and standard MBRL
algorithm – fitting models using Maximum Likelihood Estima-
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tion (MLE), followed by optimistic/pessimistic planning (depend-
ing on whether operating in online RL or offline RL mode), can
already achieve surprising theoretical guarantees. Particularly,
we show that under the conditions that trajectory-wise reward
is normalized between zero and one, and the transition is time-
homogenous, they can achieve nearly horizon-free and instance-
dependent regret and sample complexity bounds, in both online
and offline RL with non-linear function approximation. Nearly
horizon-free bounds mean that the regret or sample complexity
bounds have no explicit polynomial dependence on the horizonH.
The motivation for studying horizon-free RL is to see if RL prob-
lems are harder than bandits due to the longer horizon planning
in RL. Our result here indicates that, even under non-linear func-
tion approximation, long-horizon planning is not the bottleneck
of achieving statistical efficiency in RL. For instance-dependent
bounds, we focus on second-order bounds. A second-order re-
gret bound scales with respect to the variances of the returns of
policies and also directly implies a first-order regret bound which
scales with the expected reward of the optimal policy. Thus our
instance-dependent bounds can be small under situations such as
nearly-deterministic systems or the optimal policy having a small
value. When specializing to the case of deterministic ground truth
transitions (but the algorithm does not need to know this a pri-
ori), we show that these simple MBRL algorithms demonstrate a
faster convergence rate than the worst-case rates. The key mes-
sage of our work is
Simple and standard MLE-based MBRL algorithms are sufficient

for achieving nearly horizon-free and second-order bounds in
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online and offline RL with function approximation.
We provide a fairly standard analysis to support the above

claim. Our analysis follows the standard frameworks of optimis-
m/pessimism in the face of uncertainty. For online RL. we use
ℓ1 Eluder dimension [66, 205], a condition that uses both the
MDP structure and the function class, to capture the structural
complexity of exploration. For offline RL, we use the similar con-
centrability coefficient in [206] to capture the coverage condition
of the offline data. The key technique we leverage is the triangu-
lar discrimination – a divergence that is equivalent to the squared
Hellinger distance up to some universal constants. Triangular dis-
crimination was used in contextual bandit and model-free RL for
achieving first-order and second-order instance-dependent bounds
[207, 208, 205]. Here we show that it also plays an important role
in achieving horizon-free bounds. Our contributions can be sum-
marized as follows.
[1] Our results extend the scope of the prior work on horizon-

free RL which only applies to tabular MDPs or MDPs with
linear functions. Given a finite model class P (which could
be exponentially large), we show that in online RL, the agent
achieves an O

(√
(
∑

k VaRπk) · dRL log(KH|P|/δ) + dRL log(KH|P|/δ)
) re-

gret, where K is the number of episodes, dRL is the ℓ1 Eluder
dimension, VaRπk is the variance of the total reward of pol-
icy πk learned in episode k and δ ∈ (0, 1) denotes the failure
probability. Similarly, for offline RL, the agent achieves an
O
(√

Cπ∗VaRπ∗ log(|P|/δ)/K + Cπ∗ log(|P|/δ)/K
)
performance gap in

finding a comparator policy π∗, where Cπ∗ is the single policy
concentrability coefficient over π∗, K denotes the number of
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offline trajectories, VaRπ∗ is the variance of the total reward
of π∗. For offline RL with finite P , our result is completely
horizon-free, not even with logH dependence.

[2] When specializing to MDPs with deterministic ground truth
transition (but rewards, and models in the model class could
still be stochastic), we show that the same simple MBRL
algorithms can adapt to the deterministic environment and
achieve a better statistical complexity. For online RL, the re-
gret becomes O(dRL log(KH|P|/δ)), which only depends on
the number of episodes K poly-logarithmically. For offline
RL, the performance gap to a comparator policy π∗ becomes
O
(
Cπ∗ log(|P|/δ)/K

), which is tighter than the worst-caseO(1/
√
K)

rate. All our results can be extended to continuous model class
P using bracket number as the complexity measure.

Overall, our work identifies the minimalist algorithms and analy-
sis for nearly horizon-free and instance-dependent (first & second-
order) online & offline RL.

3.2 Preliminaries

Markov Decision Processes. We consider finite horizon time ho-
mogenous MDPM = {S,A, H, P ⋆, r, s0} where S,A are the state
and action space (could be large or even continuous), H ∈ N+ is
the horizon, P ⋆ : S × A 7→ ∆(S) is the ground truth transition,
r : S × A 7→ R is the reward signal which we assume is known
to the learner, and s0 is the fixed initial state.1 Note that the

1For simplicity, we assume initial state s0 is fixed and known. Our analysis can be easily
extended to a setting where the initial state is sampled from an unknown fixed distribution.
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transition P ⋆ here is time-homogenous. For notational easiness,
we denote [K − 1] = {0, 1, . . . , K − 1}.

We denote π as a deterministic non-stationary policy π =

{π0, . . . , πH−1} where πh : S 7→ A maps from a state to an ac-
tion. Let Π denote the set of all such policies. V π

h (s) represents
the expected total reward of policy π starting at sh = s, and
Qπ

h(s, a) is the expected total reward of the process of executing
a at s at time step h followed by executing π to the end. The
optimal policy π⋆ is defined as π⋆ = argmaxπ V π

0 (s0). For nota-
tion simplicity, we denote V π := V π

0 (s0). We will denote dπh(s, a)

as the state-action distribution induced by policy π at time step
h. We sometimes will overload notation and denote dπh(s) as the
corresponding state distribution at h. Sampling s ∼ dπh means
executing π starting from s0 to h and returning the state at time
step h.

Since we use the model-based approach for learning, we define
a general model class P ⊂ S × A 7→ ∆(S). Given a transition
P , we denote V π

h;P and Qπ
h;P as the value and Q functions of pol-

icy π under the model P . Given a function f : S × A 7→ R,
we denote the (Pf)(s, a) := Es′∼P (s,a)f(s

′). We then denote
the variance induced by one-step transition P and function f

as (VPf)(s, a) :=
(
Pf 2

)
(s, a) − (Pf(s, a))2 which is equal to

Es′∼P (s,a)f
2(s′)−

(
Es′∼P (s,a)f(s

′)
)2.

Assumptions. We make the realizability assumption that P ⋆ ∈
P . We assume that the rewards are normalized such that r(τ) ∈
[0, 1] for any trajectory τ := {s0, a0, . . . , sH−1, aH−1} where r(τ)

is short for
∑H−1

h=0 r(sh, ah). Note that this setting is more general
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than assuming each one-step reward is bounded, i.e., r(sh, ah) ∈
[0, 1/H], and allows to represent the sparse reward setting. With-
out loss of generalizability, we assume V π

h;P (s) ∈ [0, 1], for all
π ∈ Π, h ∈ [0, H], P ∈ P , s ∈ S2.

Online RL. For the online RL setting, we focus on the episodic
setting where the learner can interact with the environment for
K episodes. At episode k, the learner proposes a policy πk (based
on the past interaction history), executes πk starting from s0 to
time step H − 1. We measure the performance of the online
learning via regret:

∑K−1
k=0

(
V π⋆ − V πk

)
. To achieve meaningful

regret bounds, we often need additional structural assumptions
on the MDP and the model class P . We use a ℓ1 Eluder dimension
[66] as the structural condition due to its ability to capture non-
linear function approximators (formal definition will be given in
Section 3.3).

Offline RL. For the offline RL setting, we assume that we have
a pre-collected offline dataset D = {τ i}Ki=1 which contains K tra-
jectories. For each trajectory, we allow it to potentially be gen-
erated by an adversary, i.e., at step h in trajectory k, (i.e., skh),
the adversary can select akh based on all history (the past k − 1

trajectories and the steps before h within trajectory k) with a
fixed strategy, with the only condition that the state transitions
follow the underlying transition dynamics, i.e., sih+1 ∼ P ⋆(sih, a

i
h).

We emphasize that D is not necessarily generated by some offline
2r(τ) ∈ [0, 1] implies V π

h;P⋆(s) ∈ [0, 1]. If we do not assume V π
h;P (s) ∈ [0, 1] for all P ∈ P ,

we can simply add a filtering step in the algorithm to only choose π,P with V π
h;P (s0) ∈ [0, 1]

to get the same guarantees.
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trajectory distribution. Given D, we can split the data into HK

many state-action-next state (s, a, s′) tuples which we can use to
learn the transition. To succeed in offline learning, we typically
require the offline dataset to have good coverage over some high-
quality comparator policy π∗ (formal definition of coverage will
be given in Section 3.4). Our goal here is to learn a policy π̂ that
is as good as π∗, and we are interested in the performance gap
between π̂ and π∗, i.e., V π∗ − V π̂.

Horizon-free and Second-order Bounds. Our goal is to achieve re-
gret bounds (online RL) or performance gaps (offline RL) that
are (nearly) horizon-free, i.e., logarithmical dependence on H. In
addition to the horizon-free guarantee, we also want our bounds
to scale with respect to the variance of the policies. Denote VaRπ

as the variance of trajectory reward, i.e., VaRπ := Eτ∼π(r(τ) −
Eτ∼πr(τ))

2. Second-order bounds in offline RL scales with VaRπ∗

– the variance of the comparator policy. Second-order regret
bound in online setting scales with respect to

√∑
k VaRπk in-

stead of
√
K. Note that in the worst case,

√∑
k VaRπk scales in

the order of
√
K, but can be much smaller in benign cases such

as nearly deterministic MDPs. We also note that second-order
regret bound immediately implies first-order regret bound in the
reward maximization setting, which scales in the order

√
KV π⋆

instead of just
√
K. The first order regret bound

√
KV π⋆ is never

worse than
√
K since V π⋆ ≤ 1. Thus, by achieving a second-order

regret bound, our algorithm immediately achieves a first-order re-
gret bound.
Additional notations. Given two distributions p ∈ ∆(X ) and
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q ∈ ∆(X ), we denote the triangle discrimination D4(p ‖ q) =∑
x∈X

(p(x)−q(x))2
p(x)+q(x) , and squared Hellinger distance H2(p ‖ q) =

1
2

∑
x∈X

(√
q(x)−

√
p(x)

)2
(we replace sum via integral when

X is continuous and p and q are pdfs). Note that D4 and H2

are equivalent up to universal constants. We will frequently use
the following key lemma in [205] to control the difference between
means of two distributions.

Lemma 3.2.1 (Lemma 4.3 in [205]). For two distributions f ∈
∆([0, 1]) and g ∈ ∆([0, 1]):

|Ex∼f [x]− Ex∼g[x]| ≤ 4
√

VaRf ·D4(f ‖ g) + 5D4(f ‖ g). (3.1)

where VaRf := Ex∼f(x − Ex∼f [x])
2 denotes the variance of the

distribution f .

The lemma plays a key role in achieving second-order bounds
[205]. The intuition is the means of the two distributions can
be closer if one of the distributions has a small variance. A
more naive way of bounding the difference in means is |Ex∼f [x]−
Ex∼g[x]| ≤ (maxx∈X |x|)‖f − g‖1 ≲ (maxx∈X |x|)H(f ‖ g) ≲
(maxx∈X |x|)

√
D4(f ‖ g). Such an approach would have to pay

the maximum range maxx∈X |x| and thus can not leverage the
variance VaRf . In the next sections, we show this lemma plays an
important role in achieving horizon-free and second-order bounds.

3.3 Online Setting

In this section, we study the online setting. We present the
optimistic model-based RL algorithm (O-MBRL) in Algorithm 1.
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Algorithm 1 Optimistic Model-based RL (O-MBRL)
1: Input: model class P , confidence parameter δ ∈ (0, 1), threshold β.
2: Initialize π0, initialize dataset D = ∅.
3: for k = 0→ K − 1 do
4: Collect a trajectory τ = {s0, a0, · · · , sH−1, aH−1} from πk, split it into

tuples of {s, a, s′} and add to D.
5: Construct a version space P̂k:

P̂k =

{
P ∈ P :

∑
s,a,s′∈D

logP (s′i|si, ai) ≥ max
P̃∈P

∑
s,a,s′∈D

log P̃ (s′i|si, ai)− β

}
.

6: Set (πk, P̂ k)← argmaxπ∈Π,P∈P̂k V π
0;P (s0).

7: end for

The algorithm starts from scratch, and iteratively maintains a
version space P̂k of the model class using the historical data col-
lected so far. Again the version space is designed such that for
all k ∈ [0, K − 1], we have P ⋆ ∈ P̂k with high probability. The
policy πk in this case is computed via the optimism principle, i.e.,
it selects πk and P̂ k such that V πk

P̂ k
≥ V π⋆.

Note that the algorithm design in Algorithm 1 is not new and
in fact is quite standard in the model-based RL literature. For
instance, [23] presented a similar style of algorithm except that
they use a min-max GAN style objective for learning models. [65]
used MLE oracle with optimism planning for Partially observable
systems such as Predictive State Representations (PSRs), and
[26] used them for both partially and fully observable systems.
However, their analyses do not give horizon-free and instance-
dependent bounds. We show that under the structural condition
that captures nonlinear function class with small eluder dimen-
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sions, Algorithm 1 achieves horizon-free and second-order bounds.
Besides, since second-order regret bound implies first-order bound
[205], our result immediately implies a first-order bound as well.

We first introduce the ℓp Eluder dimension as follows.

Definition 3.1 (ℓp Eluder Dimension). DEp(Ψ,X , ϵ) is the eluder
dimension for X with function class Ψ, when the longest ϵ-independent
sequence x1, . . . , xL ⊆ X enjoys the length less than DEp(Ψ,X , ϵ),
i.e., there exists g ∈ Ψ such that for all t ∈ [L],

∑t−1
l=1 |g(xl)|p ≤ ϵp

and |g(xt)| > ϵ.

We work with the ℓ1 Eluder dimension DE1(Ψ,S ×A, ϵ) with
the function class Ψ specified as:

Ψ = {(s, a) 7→ H2(P ⋆(s, a) ‖ P (s, a)) : P ∈ P} .

Remark 1. The ℓ1 Eluder dimension has been used in previous
works such as [66]. We have the following corollary to demon-
strate that the ℓ1 dimension generalizes the original ℓ2 dimension
of [209], it can capture tabular, linear, and generalized linear
models.

Lemma 3.3.1 (Proposition 19 in [66]). For any Ψ,X , ϵ > 0,
DE1(Ψ,X , ϵ) ≤ DE2(Ψ,X , ϵ).

We are ready to present our main theorem for the online RL
setting.

Theorem 3.3.2 (Main theorem for online setting). For any δ ∈
(0, 1), let β = 4 log

(
K|P|
δ

)
, with probability at least 1 − δ, Algo-
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rithm 1 achieves the following regret bound:
K−1∑
k=0

(V π⋆ − V πk
) ≤ O

(√√√√K−1∑
k=0

VaRπk ·DE1(Ψ,S ×A, 1/KH) · log(KH |P| /δ) log(KH)

+ DE1(Ψ,S ×A, 1/KH) · log(KH |P| /δ) log(KH)
)
. (3.2)

The above theorem indicates the standard and simple O-MBRL
algorithm is already enough to achieve horizon-free and second-
order regret bounds: our bound does not have explicit polyno-
mial dependences on horizon H, the leading term scales with√∑

k VaRπk instead of the typical
√
K.

We have the following result about the first-order regret bound.

Corollary 3.1 (Horizon-free and First-order regret bound). Let
β = 4 log

(
K|P|
δ

)
, with probability at least 1 − δ, Algorithm 1

achieves the following regret bound:
K−1∑
k=0

V π⋆ − V πk ≤ O
(√

KV π⋆ ·DE1(Ψ,S ×A, 1/KH) · log(KH |P| /δ) log(KH)

+ DE1(Ψ,S ×A, 1/KH) · log(KH |P| /δ) log(KH)
)
.

Proof. Note that VaRπ ≤ V π ≤ V π⋆ where the first inequality is
because the trajectory-wise reward is bounded in [0, 1]. Therefore,
combining with Theorem 3.3.2, we directly obtain the first-order
result.

Note that the above bound scales with respect to
√
KV π⋆ in-

stead of just
√
K. Since V π⋆ ≤ 1, this bound improves the worst-

case regret bound when the optimal policy has total reward less
than one.3

3Typically a first-order regret bound makes more sense in the cost minimization setting
instead of reward maximization setting. We believe that our results are transferable to the
cost-minimization setting.
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Faster rates for deterministic transitions. When the underlying
MDP has deterministic transitions, we can achieve a smaller re-
gret bound that only depends on the number of episodes loga-
rithmically.

Corollary 3.2 (logK regret bound with deterministic transi-
tions). When the transition dynamics of the MDP are determin-
istic, setting β = 4 log

(
K|P|
δ

)
, w.p. at least 1 − δ, Algorithm 1

achieves:
K−1∑
k=0

V π⋆ − V πk ≤ O (DE1(Ψ,S ×A, 1/KH) · log(KH |P| /δ) log(KH)) .

Extension to infinite class P. For infinite model class P , we have
a similar result. First, we define the bracketing number of an
infinite model class as follows.

Definition 3.2 (Bracketing Number [210]). Let G be a set of
functions mapping X → R. Given two functions l, u such that
l(x) ≤ u(x) for all x ∈ X , the bracket [l, u] is the set of functions
g ∈ G such that l(x) ≤ g(x) ≤ u(x) for all x ∈ X . We call
[l, u] an ϵ-bracket if ‖u− l‖ ≤ ϵ. Then, the ϵ-bracketing number
of G with respect to ‖·‖, denoted by N[](ϵ,G, ‖·‖) is the minimum
number of ϵ-brackets needed to cover G.

We use the bracketing number of P to denote the complexity
of the model class, similar to |P| in the finite class case. Next,
we propose a corollary to characterize the regret with an infinite
model class.
Corollary 3.3 (Regret bound for Algorithm 1 with infinite model
class P). When P is infinite, let β = 7 log(KN[]((KH|S|)−1,P , ‖·
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‖∞)/δ), with probability at least 1 − δ, Algorithm 1 achieves the
following regret bound:
K−1∑
k=0

V π⋆ − V πk ≤ O

(
DE1(Ψ,S ×A, 1

KH
) log(

KHN[]((KH|S|)−1,P, ‖ · ‖∞)

δ
) log(KH)

+

√√√√K−1∑
k=0

VaRπk ·DE1(Ψ,S ×A, 1

KH
) log(

KHN[]((KH|S|)−1,P, ‖ · ‖∞)

δ
) log(KH)

)
,

where N[]((KH|S|)−1,P , ‖ · ‖∞) is the bracketing number de-
fined in Definition 3.2.

A specific example of the infinite model class is the tabular
MDP, where P is the collection of all the conditional distributions
over S ×A → ∆(S). By Corollary 3.3, we also have a new regret
bound for MBRL under the tabular MDP setting, which is nearly
horizon-free and second-order.

Example 1 (Tabular MDPs). When specializing to tabular MDPs,
use the fact that tabular MDP has ℓ2 Eluder dimension being at
most |S||A| (Section D.1 in [209]), ℓ1 dimension is upper bounded
by ℓ2 dimension (Lemma 3.3.1), and use the standard ϵ-net argu-
ment to show that N[](ϵ,P , ‖ · ‖∞) is upper-bounded by (c/ϵ)|S|

2|A|

(e.g., see [24]), we can show that Algorithm 1 achieves the fol-
lowing regret bound for tabular MDP: with probability at least
1− δ,

∑
k

V π⋆ − V πk ≤ O
(
|S|1.5|A|

√∑
k

VaRπk · log(KH|S|
δ

) log(KH)

+ |S|3|A|2 log(KH|S|
δ

) log(KH)
)
.
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In summary, we have shown that a simple MLE-based MBRL
algorithm is enough to achieve nearly horizon-free and second-
order regret bounds under non-linear function approximation.

3.3.1 Proof Sketch of Theorem 3.3.2

Now we are ready to provide a proof sketch of Theorem 3.3.2
with the full proof deferred to Appendix A.1.5. For ease of pre-
sentation, we use dRL to denote DE1(Ψ,S×A, 1/KH), and ignore
some log terms.

Overall, our analysis follows the general framework of opti-
mism in the face of uncertainty, but with (1) careful analysis in
leveraging the MLE generalization bound and (2) more refined
proof in the training-to-testing distribution transfer via Eluder
dimension.

By standard MLE analysis, we can show w.p. 1 − δ, for all
k ∈ [K − 1], we have P ⋆ ∈ P̂k, and

k−1∑
i=0

H−1∑
h=0

H2(P ⋆(sih, a
i
h)||P̂ k(sih, a

i
h)) ≤ O(log(K |P| /δ)) . (3.3)

From here, trivially applying training-to-testing distribution
transfer via the Eluder dimension as previous works (e.g., [205])
would cause poly-dependence on H. With new techniques de-
tailed in Appendix A.1.2, which is one of our technical contribu-
tions and may be of independent interest, we can get: there exists
a set K ⊆ [K − 1] such that |K| ≤ O(dRL log(K|P|/δ)), and∑

k∈[K−1]\K

∑
h

H2
(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
)

≤ O(dRL · log(K |P| /δ) log(KH)) . (3.4)
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Recall that (πk, P̂ k)← argmaxπ∈Π,P∈P̂k V π
0;P (s0), with the above

realization guarantee P ⋆ ∈ P̂k, we can get the following optimism
guarantee: V ⋆

0;P ⋆ ≤ maxπ∈Π,P∈P̂k V π
0;P = V πk

0;P̂ k
.

At this stage, one straight-forward way to proceed is to use
the standard simulation lemma (Lemma A.1.5):
K−1∑
k=0

V πk

0;P̂ k − V πk

0;P ⋆

≤
K−1∑
k=0

H−1∑
h=0

E
s,a∼dπkh

[∣∣∣Es′∼P ⋆(s,a)V
πk

h+1;P̂ k(s
′)− Es′∼P̂ k(s,a)V

πk

h+1;P̂ k(s
′)
∣∣∣] .

(3.5)
However, from here, if we naively bound each term on the

RHS via E
s,a∼dπkh

‖P ⋆(s, a) − P̂ (s, a)‖1, which is what previous
works such as [24] did exactly, we would end up paying a lin-
ear horizon dependence H due to the summation over H on the
RHS the above expression. Given the mean-to-variance lemma
(Lemma 3.2.1), we may consider using it to bound the difference
between two means Es′∼P ⋆(s,a)V

πk

h+1;P̂ k
(s′) − Es′∼P̂ k(s,a)V

πk

h+1;P̂ k
(s′).

This still can not work if we start from here, because we would
eventually get

∑
k

∑
h Es,a∼dπkh

[H2(P ⋆(s, a)||P̂ k(s, a))] terms, which
can not be further upper bounded easily with the MLE general-
ization guarantee.

To achieve horizon-free and second-order bounds, we need a
novel and more careful analysis.

First, we carefully decompose and upper bound the regret in
K̃ := [K − 1] \ K w.h.p. as follows using Bernstain’s inequality
(for regret in K we simply upper bound it by |K|)
∑
k∈K̃

(
V πk

0;P̂k(s
k
h)−

H−1∑
h=0

r(skh, a
k
h)

)
+
∑
k∈K̃

(
H−1∑
h=0

r(skh, a
k
h)− V πk

0;P ⋆

)
≲
√∑

k∈K̃

∑
h

(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
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+
∑
k∈K̃

∑
h

∣∣∣Es′∼P̂k(skh,a
k
h)
V πk

h+1;P̂k(s
′)− Es′∼P ∗(skh,a

k
h)
V πk

h+1;P̂k(s
′)
∣∣∣+√∑

k

VaRπk log(1/δ) .

(3.6)

Then, we bound the difference of two means Es′∼P̂ k(skh,a
k
h)
V πk

h+1;P̂ k
(s′)−

Es′∼P ∗(skh,a
k
h)
V πk

h+1;P̂ k
(s′) using variances and the triangle discrimi-

nation (see Lemma 3.2.1 for more details), together with the fact
that D4 ≤ 4H2, and information processing inequality on the
squared Hellinger distance, we have
|E

s′∼P̂k(skh,a
k
h)
V πk

h+1;P̂k(s
′)− Es′∼P ∗(skh,a

k
h)
V πk

h+1;P̂k(s
′)|

≤ O
(√(

VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)D△

(
V πk

h+1;P̂k

(
s′ ∼ P ⋆(skh, a

k
h)
)
‖ V πk

h+1;P̂k
(s′ ∼ P̂ k

(
skh, a

k
h)
))

+D△

(
V πk

h+1;P̂k

(
s′ ∼ P ⋆(skh, a

k
h)
)
‖ V πk

h+1;P̂k(s
′ ∼ P̂ k

(
skh, a

k
h)
)))

≤ O
(√(

VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)H2

(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
)
+H2

(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
))

where we denote V π∗

h+1;P̂
(s′ ∼ P ⋆(s, a)) as the distribution of

the random variable V π∗

h+1;P̂
(s′) with s′ ∼ P ⋆(s, a). This is the

key lemma used by [205] to show distributional RL can achieve
second-order bounds. We show that this is also crucial for achiev-
ing a horizon-free bound.

Then, summing up over k, h, with Cauchy-Schwartz and the
MLE generalization bound via Eluder dimension in Equation 3.4,
we have∑
k∈K̃

∑
h

∣∣∣Es′∼P̂k(skh,a
k
h)
V πk

h+1;P̂k(s
′)− Es′∼P ∗(skh,a

k
h)
V πk

h+1;P̂k(s
′)
∣∣∣ ≤ O

(∑
k∈K̃

∑
h

H2
(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
)

+

√∑
k∈K̃

∑
h

(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
∑
k∈K̃

∑
h

H2
(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
))

≤ O
(√∑

k∈K̃

∑
h

(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)dRL log(K |P| /δ) log(KH) + dRL log(K |P| /δ) log(KH)

)
.

(3.7)

Note that we have
(
VP ⋆V πk

h+1;P̂ k

)
(skh, a

k
h) depending on P̂ k. To

get a second-order bound, we need to convert it to the variance
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under ground truth transition P ⋆, and we want to do it without
incurring any H dependence. This is another key difference from
[205].

We aim to replace
(
VP ⋆V πk

h+1;P̂ k

)
(skh, a

k
h) by

(
VP ⋆V πk

h+1

)
(skh, a

k
h)

which is the variance under P ⋆ (recall that V π is the value function
of π under P ⋆), and we want to control the difference(
VP ⋆

(
V πk

h+1;P̂ k
− V πk

h+1

) )
(skh, a

k
h). To do so, we need to bound the

2m moment of the difference V πk

h+1;P̂ k
−V πk

h+1 following the strategy
in [71, 76, 80]. Let us define the following terms:

A :=
∑
k∈K̃

∑
h

[(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]
, Cm :=

∑
k∈K̃

∑
h

[(
VP ⋆(V πk

h+1;P̂k − V πk

h+1)
2m
)
(skh, a

k
h)
]
,

B :=
∑
k∈K̃

∑
h

[(
VP ⋆V πk

h+1

)
(skh, a

k
h)
]
, G :=

√
A · dRL log(K |P|

δ
) log(KH) + dRL log(K |P|

δ
) log(KH) .

With the fact VP ⋆(a + b) ≤ 2VP ⋆(a) + 2VP ⋆(b) we have A ≤
2B+2C0. For Cm, we prove that w.h.p. it has the recursive form
Cm ≲ 2mG+

√
log(1/δ)Cm+1+ log(1/δ), during which process we

also leverage the above Equation 3.7 and some careful analysis
(detailed in Appendix A.1.5). Then, with the recursion lemma
(Lemma A.1.9), we can get C0 ≲ G, which further gives us

A ≲ B + dRL log(
K |P|
δ

) log(KH) +

√
A · dRL log(

K |P|
δ

) log(KH)

≤ O
(
B + dRL log(

K |P|
δ

) log(KH)
)
,

where in the last step we use the fact x ≤ 2a + b2 if x ≤
a + b

√
x. Finally, we note that B ≤ O(

∑
k VaRπk + log(1/δ))

w.h.p.. Plugging the upper bound of A back into Equation 3.7
and then to Equation 3.6, we conclude the proof.
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Algorithm 2 ([24]) Constrained Pessimistic Policy Optimization with
Likelihood-Ratio based constraints (CPPO-LR)

1: Input: dataset D = {s, a, s′}, model class P , policy class Π, confidence
parameter δ ∈ (0, 1), threshold β.

2: Calculate the confidence set based on the offline dataset:

P̂ =

{
P ∈ P :

n∑
i=1

logP (s′i|si, ai) ≥ max
P̃∈P

n∑
i=1

log P̃ (s′i|si, ai)− β

}
.

3: Output: π̂ ← argmaxπ∈Π minP∈P̂ V π
0;P (s0).

3.4 Offline Setting

For the offline setting, we directly analyze the Constrained Pes-
simism Policy Optimization (CPPO-LR) algorithm (Algorithm 2)
proposed by [24]. We first explain the algorithm and then present
its performance gap guarantee in finding the comparator policy
π∗.

Algorithm 2 splits the offline trajectory data that contains K
trajectories into a dataset of (s, a, s′) tuples (note that in total we
have n := KH many tuples) which is used to perform maximum
likelihood estimation maxP̃∈P

∑n
i=1 log P̃ (s′i|si, ai). It then builds

a version space P̂ which contains models P ∈ P whose log data
likelihood is not below by too much than that of the MLE esti-
mator. The threshold for the version space is constructed so that
with high probability, P ⋆ ∈ P̂ . Once we build a version space,
we perform pessimistic planning to compute π̂.

We first define the single policy coverage condition as follows.

Definition 3.3 (Single policy coverage). Given any comparator
policy π∗, denote the data-dependent single policy concentrability
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coefficient Cπ∗

D as follows:

Cπ∗
D := max

h,P∈P

Es,a∼dπ
∗

h
H2 (P (s, a) ‖ P ⋆(s, a))

1/K
∑K

k=1H2
(
P (skh, a

k
h) ‖ P ⋆(skh, a

k
h)
) .

We assume w.p. at least 1 − δ over the randomness of the
generation of D, we have Cπ∗

D ≤ Cπ∗.

The existence of Cπ∗ is certainly an assumption. We now give
an example in the tabular MDP where we show that if the data
is generated from some fixed behavior policy πb which has non-
trivial probability of visiting every state-action pair, then we can
show the existence of Cπ∗.

Example 2 (Tabular MDP with good behavior policy coverage).
If the K trajectories are collected i.i.d. with a fixed behavior policy
πb, and dπ

b

h (s, a) ≥ ρmin, ∀s, a, h (similar to [72]), then we have:
if K is large enough, i.e., K ≥ 2 log(|S||A|H)/ρ2min, w.p. at least
1− δ, Cπ∗

D ≤ 2/ρmin.

Our coverage definition (Definition 3.3) shares similar spirits
as the one in [206]. It reflects how well the state-action samples in
the offline dataset D cover the state-action pairs induced by the
comparator policy π⋆. It is different from the coverage definition
in [24] in which the denominator is E

s,a∼dπ
b

h

H2 (P (s, a) ‖ P ⋆(s, a)) where
πb is the fixed behavior policy used to collect D. This definition
does not apply in our setting since D is not necessarily generated
by some underlying fixed behavior policy. On the other hand,
our horizon-free result does not hold in the setting of [24] where
D is collected with a fixed behavior policy πb with the concentra-
bility coefficient defined in their way. We leave the derivation of
horizon-free results in the setting from [24] as a future work.
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Now we are ready to present the main theorem of Algorithm 2,
which provides a tighter performance gap than that by [24].

Theorem 3.4.1 (Performance gap of Algorithm 2). For any δ ∈
(0, 1), let β = 4 log(|P|/δ), w.p. at least 1− δ, Algorithm 2 learns
a policy π̂ that enjoys the following performance gap with respect
to any comparator policy π∗:

V π∗−V π̂ ≤ O
(√

Cπ∗VaRπ∗ log(|P|/δ)/K + Cπ∗ log(|P|/δ)/K
)
.

Comparing to the theorem (Theorem 2) of CPPO-LR from
[24], our bound has two improvements. First, our bound is horizon-
free (not even any log(H) dependence), while the bound in [24]
has poly(H) dependence. Second, our bound scales with VaRπ∗ ∈
[0, 1], which can be small when VaRπ∗ � 1. For deterministic sys-
tem and policy π∗, we have VaRπ∗ = 0 which means the sample
complexity now scales at a faster rate Cπ∗

/K. The proof is in
Appendix A.1.9.

We show that the same algorithm can achieve 1/K rate when
P ⋆ is deterministic (but rewards could be random, and the algo-
rithm does not need to know the condition that P ⋆ is determin-
istic).

Corollary 3.4 (Cπ∗
/K performance gap of Algorithm 2 with

deterministic transitions). When the ground truth transition P ⋆ of
the MDP is deterministic, for any δ ∈ (0, 1), let β = 4 log(|P|/δ),
w.p. at least 1− δ, Algorithm 2 learns a policy π̂ that enjoys the
following performance gap with respect to any comparator policy
π∗:

V π∗ − V π̂ ≤ O
(
Cπ∗ log(|P|/δ)/K

)
.
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For infinite model class P , we have a similar result in the
following corollary.
Corollary 3.5 (Performance gap of Algorithm 2 with infinite
model class P). When the model class P is infinite, for any δ ∈
(0, 1), let β = 7 log(N[]((KH|S|)−1,P , ‖ · ‖∞)/δ), w.p. at least
1−δ, Algorithm 2 learns a policy π̂ that enjoys the following PAC
bound w.r.t. any comparator policy π∗:

V π∗
− V π̂ ≤ O

(√
Cπ∗VaRπ∗ log(N[]((KH|S|)−1,P, ‖ · ‖∞)/δ)

K
+

Cπ∗ log(N[]((KH|S|)−1,P, ‖ · ‖∞)/δ)

K

)
,

where N.[]((KH|S|)−1,P , ‖ ·‖∞) is the bracketing number defined
in Definition 3.2.

Our next example gives the explicit performance gap bound
for tabular MDPs.

Example 3 (Tabular MDPs). For tabular MDPs, we haveN[](ϵ,P , ‖·
‖∞) upper-bounded by (c/ϵ)|S|

2|A| (e.g., see [24]). Then with prob-
ability at least 1 − δ, let β = 7 log(N[]((KH|S|)−1,P , ‖ · ‖∞)/δ),
Algorithm 2 learns a policy π̂ satisfying the following performance
gap with respect to any comparator policy π∗:

V π∗ − V π̂ ≤ O

(
|S|
√
|A|Cπ∗VaRπ∗ log(KH|S|/δ)/K

+ |S|2|A|Cπ∗ log(KH|S|/δ)/K

)
, (3.8)

The closest result to us is from [72], which analyzes the MBRL
for tabular MDPs and obtains a performance gap Õ(

√
1

Kdm
+ |S|

Kdm
),

where dm is the minimum visiting probability for the behavior
policy to visit each state and action. Note that their result is not
instance-dependent, which makes their gap only Õ(1/

√
K) even
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when the environment is deterministic and π∗ is deterministic. In
a sharp contrast, our analysis shows a better Õ(1/K) gap under
the deterministic environment. Our result would still have the
logH dependence, and we leave getting rid of this logarithmic
dependence on the horizon H as an open problem.



Chapter 4

Provable Zero-Shot
Generalization in Offline
Reinforcement Learning

In this chapter, we study offline reinforcement learning (RL) with
zero-shot generalization property (ZSG), where the agent has ac-
cess to an offline dataset including experiences from different en-
vironments, and the goal of the agent is to train a policy over the
training environments which performs well on test environments
without further interaction. Existing work showed that classi-
cal offline RL fails to generalize to new, unseen environments.
We propose pessimistic empirical risk minimization (PERM) and
pessimistic proximal policy optimization (PPPO), which leverage
pessimistic policy evaluation to guide policy learning and enhance
generalization. We show that both PERM and PPPO are capa-
ble of finding a near-optimal policy with ZSG. Our result serves
as a first step in understanding the foundation of the generaliza-
tion phenomenon in offline reinforcement learning. This chapter
is based on our publication [2].

41
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4.1 Introduction

Offline reinforcement learning (RL) has become increasingly sig-
nificant in modern RL because it eliminates the need for direct
interaction between the agent and the environment; instead, it
relies solely on learning from an offline training dataset. How-
ever, in practical applications, the offline training dataset often
originates from a different environment than the one of interest.
This discrepancy necessitates evaluating RL agents in a gener-
alization setting, where the training involves a finite number of
environments drawn from a specific distribution, and the test-
ing is conducted on a distinct set of environments from the same
or different distribution. This scenario is commonly referred to
as the zero-shot generalization (ZSG) challenge which has been
studied in online RL[28, 29, 30, 31, 32, 33], as the agent receives
no training data from the environments it is tested on.

A number of recent empirical studies [3, 34, 35] have recog-
nized this challenge and introduced various offline RL method-
ologies that are capable of ZSG. Notwithstanding the lack of the-
oretical backing, these methods are somewhat restrictive; for in-
stance, some are only effective for environments that vary solely
in observations[35], while others are confined to the realm of imi-
tation learning[34], thus limiting their applicability to a compre-
hensive framework of offline RL with ZSG capabilities. Concur-
rently, theoretical advancements [36, 37] in this domain have ex-
plored multi-task offline RL by focusing on representation learn-
ing. These approaches endeavor to derive a low-rank represen-
tation of states and actions, which inherently requires additional
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interactions with the downstream tasks to effectively formulate
policies based on these representations. Therefore, we raise a
natural question:

Can we design provable offline RL with zero-shot generalization
ability?

We propose novel offline RL frameworks that achieve ZSG to
address this question affirmatively. Our contributions are listed
as follows.

• We first analyze when existing offline RL approaches fail to
generalize without further algorithm modifications. Specifi-
cally, we prove that if the offline dataset does not contain
context information, then it is impossible for vanilla RL that
equips a Markovian policy to achieve a ZSG property. We
show that the offline dataset from a contextual Markov Deci-
sion Process (MDP) is not distinguishable from a vanilla MDP
which is the average of contextual Markov Decision Process
over all contexts. Such an analysis verifies the necessity of new
RL methods with ZSG property.

• We propose two meta-algorithms called pessimistic empirical
risk minimization (PERM) and pessimistic proximal policy op-
timization (PPPO) that enable ZSG for offline RL [91]. In de-
tail, both of our algorithms take a pessimistic policy evaluation
(PPE) oracle as its component and output policies based on
offline datasets from multiple environments. Our result shows
that the sub-optimalities of the output policies are bounded
by both the supervised learning error, which is controlled by



4.1. INTRODUCTION 44

Table 4.1: Summary of our algorithms and their suboptimality gaps, where
A is the action space, H is the length of episode, n is the number of en-
vironments in the offline dataset. Note that in the multi-environment set-
ting, π∗ is the near-optimal policy w.r.t. expectation (defined in Section
8.2). N is the covering number of the policy space Π w.r.t. distance
d(π1, π2) = maxs∈S,h∈[H] ‖π1

h(·|s) − π2
h(·|s)‖1. The uncertainty quantifier Γi,h

are tailored with the oracle return in the corresponding algorithms (details are
in Section 4.4).

Algorithm Suboptimality Gap
PERM (our Algo.4)

√
log(N )/n+ n−1

∑n
i=1

∑H
h=1 Ei,π∗

[
Γi,h(sh, ah)

∣∣ s1 = x1

]
PPPO (our Algo.5)

√
log |A|H2/n+ n−1

∑n
i=1

∑H
h=1 Ei,π∗

[
Γi,h(sh, ah)

∣∣ s1 = x1

]
the number of different environments, and the reinforcement
learning error, which is controlled by the coverage of the of-
fline dataset to the optimal policy. Please refer to Table 4.1
for a summary of our results. To the best of our knowledge,
our proposed algorithms are the first offline RL methods that
provably enjoy the ZSG property.

Notation We use lower case letters to denote scalars, and use
lower and upper case bold face letters to denote vectors and matri-
ces respectively. We denote by [n] the set {1, . . . , n}. For a vector
x ∈ Rd and a positive semi-definite matrix Σ ∈ Rd×d, we denote
by ‖x‖2 the vector’s Euclidean norm and define ‖x‖Σ =

√
x>Σx.

For two positive sequences {an} and {bn} with n = 1, 2, . . . , we
write an = O(bn) if there exists an absolute constant C > 0 such
that an ≤ Cbn holds for all n ≥ 1 and write an = Ω(bn) if there
exists an absolute constant C > 0 such that an ≥ Cbn holds for all
n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors.
We use (xi)ni=1 to denote sequence (x1, ..., xn), and we use {xi}ni=1

to denote the set {x1, ..., xn}. We use KL(p‖q) to denote the KL
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distance between distributions p and q, defined as
∫
p log(p/q).

We use E[x],V[x] to denote expectation and variance of a ran-
dom variable x.

4.2 Preliminaries

Contextual MDP We study contextual episodic MDPs, where
each MDP Mc is associated with a context c ∈ C belongs to
the context space C. Furthermore, Mc = {Mc,h}Hh=1 consists
of H different individual MDPs, where each individual MDP
Mc,h := (S,A, Pc,h(s

′|s, a), rc,h(s, a)). Here S denotes the state
space, A denotes the action space, Pc,h denotes the transition
function and rc,h denotes the reward function at stage h. We as-
sume the starting state for eachMc is the same state x1. In this
work, we interchangeablely use “environment” or MDP to denote
the MDPMc with different contexts.
Policy and value function We denote the policy πh at stage
h as a mapping S → ∆(A), which maps the current state to a
distribution over the action space. We use π = {πh}Hh=1 to denote
their collection. Then for any episodic MDP M, we define the
value function for some policy π as

V π
M,h(x) := E[rh + ...+ rH |sh = x, ah′ ∼ πh′ , rh′ ∼ rh′(sh′ , ah′), sh′+1 ∼ Ph′(·|sh′ , ah′), h′ ≥ h] ,

Qπ
M,h(x, a) := E[rh + ...+ rH |sh = x, ah = a, rh ∼ rh(sh, ah), sh′ ∼ Ph′−1(·|sh′−1, ah′−1), ah′ ∼ πh′ ,

rh′ ∼ rh′(sh′ , ah′), h′ ≥ h+ 1].

For any individual MDPM with reward r and transition dynamic
P , we denote its Bellman operator [BMf ](x, a) as [BMf ](s, a) :=
E[rh(s, a) + f(s′)|s′ ∼ P (·|s, a)]. Then we have the well-known
Bellman equation

V π
M,h(x) = 〈Qπ

M,h(x, ·), πh(·|x)〉A, Qπ
M,h(x, a) = [BMh

V π
M,h+1](x, a).
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For simplicity, we use V π
c,h, Q

π
c,h,Bc,h to denote V π

Mc,h
, Qπ
Mc,h

,BMc,h
.

We also use Pc to denote PMc
, the joint distribution of any po-

tential objects under the Mc episodic MDP. We would like to
find the near-optimal policy π∗ w.r.t. expectation, i.e., π∗ :=
argmaxπ∈Π Ec∼CV

π
c,1(xc), where Π is the set of collection of Marko-

vian policies, and with a little abuse of notation, we use Ec∼C to
denote the expectation taken w.r.t. the i.i.d. sampling of context
c from the context space. Then our goal is to develop the gen-
eralizable RL with small zero-shot generalization gap (ZSG gap),
defined as follows:

SubOpt(π) := Ec∼C

[
V π∗
c,1 (x1)

]
− Ec∼C

[
V π
c,1(x1)

]
.

Remark 2. We briefly compare generalizable RL with several
related settings. Robust RL [211] aims to find the best policy
for the worst-case environment, whereas generalizable RL seeks a
policy that performs well in the average-case environment. Meta-
RL [212] enables few-shot adaptation to new environments, ei-
ther through policy updates [213] or via history-dependent poli-
cies [214]. In contrast, generalizable RL primarily focuses on the
zero-shot setting. In the general POMDP framework [215], agents
need to maintain history-dependent policies to implicitly infer en-
vironment information, while generalizable RL aims to discover
a single state-dependent policy that generalizes well across all en-
vironments.

Remark 3. [126] showed that in online RL, for a certain fam-
ily of contextual MDPs, it is inherently impossible to determine
an optimal policy for each individual MDP. Given that offline
RL poses greater challenges than its online counterpart, this im-
possibility extends to finding optimal policies for each MDP in a
zero-shot offline RL setting as well, which justifies our optimiza-
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tion objective on the ZSG gap. Moreover, [126] showed that the
few-shot RL is able to find the optimal policy for individual MDPs.
Clearly, such a setting is stronger than ours, and the additional
interactions are often hard to be satisfied in real-world practice.
We leave the study of such a setting for future work.

Offline RL data collection process The data collection pro-
cess is as follows. An experimenter i.i.d. samples number n of
contextual episodic MDP Mi from the context set (e.g., i ∼ C).
For each episodic MDP Mi, the experimenter collects dataset
Di := {(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1 which includes K trajectories. Note
that the action aτi,h selected by the experimenter can be arbitrary,
and it does not need to follow a specific behavior policy [91]. We
assume that Di is compliant with the episodic MDP Mi, which
is defined as follows.

Definition 4.1 ([91]). For Di := {(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1, let PDi

be the joint distribution of the data collecting process. We say
Di is compliant with episodic MDP Mi if for any x′ ∈ S, r′, τ ∈
[K], h ∈ [H], we have

PDi
(rτi,h = r′, xτi,h+1 = x′|{(xji,h, a

j
i,h)}

τ
j=1, {(r

j
i,h, x

j
i,h+1)}

τ−1
j=1)

= Pi(ri,h(sh, ah) = r′, sh+1 = x′|sh = xτh, ah = aτh).

In general, we claim Di is compliant with Mi when the con-
ditional distribution of any tuple of reward and next state in Di

follows the conditional distribution determined by MDPMi.
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4.3 Offline RL without context indicator in-
formation

In this section, we show that directly applying existing offline
RL algorithms over datasets from multiple environments without
maintaining their identity information cannot yield a sufficient
ZSG property, which is aligned with the existing observation of
the poor generalization performance of offline RL [3].

In detail, given contextual MDPs M1, ...,Mn and their cor-
responding offline datasets D1, ...,Dn, we assume the agent only
has the access to the offline dataset D̄ = ∪ni=1Di, where D̄ =

{(xτcτ ,h, a
τ
cτ ,h

, rτcτ ,h)
H
h=1}Kτ=1. Here cτ ∈ C is the context information

of trajectory τ , which is unknown to the agent. To explain why of-
fline RL without knowing context information performs worse, we
have the following proposition suggesting the offline dataset from
multiple MDPs is not distinguishable from an “average MDP” if
the offline dataset does not contain context information.

Proposition 4.1. D̄ is compliant with average MDP M̄ :=

{M̄h}Hh=1, M̄h :=
(
S,A, H, P̄h, r̄h

)
,

P̄h(x
′|x, a) := Ec∼C

Pc,h(x
′|x, a)µc,h(x, a)

Ec∼Cµc,h(x, a)
,

P(r̄h = r|x, a) := Ec∼C
P(r̄c,h = r|x, a)µc,h(x, a)

Ec∼Cµc,h(x, a)
,

where µc,h(·, ·) is the data collection distribution of (s, a) at stage
h in dataset Dc.

Proof. See Appendix A.2.1.1.
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Proposition 4.1 suggests that if no context information is re-
vealed, then the merged offline dataset D̄ is equivalent to a dataset
collected from the average MDP M̄. Therefore, for any offline RL
which outputs a Markovian policy, it converges to the optimal
policy π̄∗ of the average MDP M̄.

In general, π̄∗ can be very different from π∗ when the transition
probability functions of each environment are different. For ex-
ample, consider the 2-context cMDP problem shown in Figure 4.1,
each context consists of one state and three possible actions. The
offline dataset distributions µ are marked on the arrows that both
of the distributions are following near-optimal policy. By Propo-
sition 4.1, in average MDP M̄ the reward of the middle action is
deterministically 0, while both upper and lower actions are deter-
ministically 1. As a result, the optimal policy π̄∗ will only have
positive probabilities toward upper and lower actions. This leads
to Ec∼C [V

π∗

c,1 (x1)] = 0, though we can see that π∗ is deterministi-
cally choosing the middle action and Ec∼C [V

π∗

c,1 (x1)] = 0.5. This
theoretically illustrates that the generalization ability of offline
RL algorithms without leveraging context information is weak. In
sharp contrast, imitation learning such as behavior cloning (BC)
converges to the teacher policy that is independent of the specific
MDP. Therefore, offline RL methods such as CQL [95] might en-
joy worse generalization performance compared with BC, which
aligns with the observation made by [3].
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x1

µv(a1
) = 1− ϵ

rv(a1) = 1

µv(a2) = ϵ
rv(a2) = 0

µv(a3) = 0 rv(a3) = −1

x1

µw(a1
) = 0 rw(a1) = −1
µw(a2) = 0

rw(a2) = 1

µw(a3) = 1 rw(a3) = 1

Figure 4.1: Two Contextual MDPs with the same compliant average MDPs.
The discrete contextual space is defined as C = {v, w} and both MDPs satisfies
S = {x1},A = {a1, a2, a3}, H = 1. The data collection distributions µ and
rewards r for each action of each context are specified in the graph.

4.4 Provable offline RL with zero-shot gener-
alization

In this section, we propose offline RL with small ZSG gaps. We
show that two popular offline RL approaches, model-based RL
and policy optimization-based RL, can output RL agent with ZSG
ability, with a pessimism-style modification that encourages the
agent to follow the offline dataset pattern.

4.4.1 Pessimistic policy evaluation

We consider a meta-algorithm to evaluate any policy π given an
offline dataset, which serves as a key component in our proposed
offline RL with ZSG. To begin with, we consider a general individ-
ual MDP and an oracle O, which returns us an empirical Bellman
operator and an uncertainty quantifier, defined as follows.

Definition 4.2 ([91]). For any individual MDP M , a dataset D ⊆
S ×A×S × [0, 1] that is compliant with M , a test function VD ⊆
[0, H]S and a confidence level ξ, we have an oracle O(D, VD, ξ) that
returns (B̂VD(·, ·),Γ(·, ·)), a tuple of Empirical Bellman operator
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Algorithm 3 Pessimistic Policy Evaluation (PPE)
Require: Offline dataset {Di,h}Hh=1, policy π = (πh)

H
h=1, confidence probability

δ ∈ (0, 1).
1: Initialize V̂ π

i,H+1(·)← 0, ∀i ∈ [n].
2: for step h = H,H − 1, . . . , 1 do
3: Let (B̂i,hV̂

π
i,h+1)(·, ·),Γi,h(·, ·)← O(Di,h, V̂

π
i,h+1, δ)

4: Set Q̂π
i,h(·, ·)← min{H − h+ 1, (B̂i,hV̂

π
i,h+1)(·, ·)− Γi,h(·, ·)}+

5: Set V̂ π
i,h(·)← 〈Q̂π

i,h(·, ·), πh(·|·)〉A
6: end for
7: return V̂ π

i,1(·), . . . , V̂ π
i,H(·), Q̂π

i,1(·, ·), . . . , Q̂π
i,H(·, ·).

and uncertainty quantifier, satisfying
PD

(∣∣(B̂VD)(x, a)− (BMVD)(x, a)
∣∣ ≤ Γ(x, a) for all (x, a) ∈ S ×A

)
≥ 1− ξ.

Remark 4. Here we adapt a test function VD that can depend on
the dataset D itself. Therefore, Γ is a function that depends on
both the dataset and the test function class. We do not specify
the test function class in this definition, and we will discuss its
specific realization in Section 4.5.

Remark 5. For general non-linear MDPs, one may employ the
bootstrapping technique to estimate uncertainty, in line with the
bootstrapped DQN approach developed by [216]. We note that
when the bootstrapping method is straightforward to implement,
the assumption of having access to an uncertainty quantifier is
reasonable.

Based on the oracle O, we propose our pessimistic policy eval-
uation (PPE) algorithm as Algorithm 3. In general, PPE takes a
given policy π as its input, and its goal is to evaluate the V value
and Q value {(V π

i,h, Q
π
i,h)}Hh=1 of π on MDPMi. Since the agent is

not allowed to interact withMi, PPE evaluates the value based
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on the offline dataset {Di,h}Hh=1. At each stage h, PPE utilizes the
oracleO and obtains the empirical Bellman operator based onDi,h

as well as its uncertainty quantifier, with high probability. Then
PPE applies the pessimism principle to build the estimation of
the Q function based on the empirical Bellman operator and the
uncertainty quantifier. Such a principle has been widely studied
and used in offline policy optimization, such as pessimistic value
iteration (PEVI) [91]. To compare with, we use the pessimism
principle in the policy evaluation problem.

Remark 6. In our framework, pessimism can indeed facilitate
generalization, rather than hinder it. Specifically, we employ pes-
simism to construct reliable Q functions for each environment
individually. This approach supports broader generalization by
maintaining multiple Q-networks separately. By doing so, we
ensure that each Q function is robust within its specific environ-
ment, while the collective set of Q functions enables the system to
generalize across different environments.

4.4.2 Model-based approach: pessimistic empirical risk
minimization

Given PPE, we propose algorithms that have the ZSG ability. We
first propose a pessimistic empirical risk minimization (PERM)
method which is model-based and conceptually simple. The al-
gorithm details are in Algorithm 4. In detail, for each dataset
Di drawn from i-th environments, PERM builds a model us-
ing PPE to evaluate the policy π under the environment Mi.
Then PERM outputs a policy πPERM ∈ Π that maximizes the
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Algorithm 4 Pessimistic Empirical Risk Minimization (PERM)
Require: Offline dataset D = {Di}ni=1,Di := {(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1, policy class

Π, confidence probability δ ∈ (0, 1), a pessimistic offline policy evaluation algo-
rithm Evaluation as a subroutine.

1: Set Di,h = {(xτi,h, aτi,h, rτi,h, xτi,h+1)}Kτ=1

2: πPERM = argmaxπ∈Π
1
n

∑n
i=1 V̂

π
i,1(x1),

where [V̂ π
i,1(·), ·, . . . , ·] = Evaluation

(
{Di,h}Hh=1, π, δ/(3nHNΠ

(Hn)−1))
)

3: return πPERM.

average pessimistic value, i.e., 1/n
∑n

i=1 V̂
π
i,1(x1). Our approach

is inspired by the classical empirical risk minimization approach
adopted in supervised learning, and the Optimistic Model-based
ERM proposed in [126] for online RL. Our setting is more chal-
lenging than the previous ones due to the RL setting and the
offline setting, where the interaction between the agent and the
environment is completely disallowed. Therefore, unlike [126],
which adopted an optimism-style estimation to the policy value,
we adopt a pessimism-style estimation to fight the distribution
shift issue in the offline setting.

Next we propose a theoretical analysis of PERM. Denote NΠ
ϵ

as the ϵ-covering number of the policy space Π w.r.t. distance
d(π1, π2) = maxs∈S,h∈[H] ‖π1

h(·|s) − π2
h(·|s)‖1. Then we have the

following theorem to provide an upper bound of the suboptimality
gap of the output policy πPERM.

Theorem 4.4.1. Set the Evaluation subroutine in Algorithm 4 as
PPE (Algo.3). Let Γi,h be the uncertainty quantifier returned by
O through the PERM. Then w.p. at least 1− δ, the output πPERM
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of Algorithm 4 satisfies

SubOpt(πPERM) ≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n︸ ︷︷ ︸
I1:Supervised learning (SL) error

+
2

n

n∑
i=1

H∑
h=1

Ei, π∗Γi,h(sh, ah)|s1 = x1︸ ︷︷ ︸
I2:Reinforcement learning (RL) error

,

(4.1)

where Ei,π∗ is w.r.t. the trajectory induced by π∗ with the transi-
tion Pi in the underlying MDP Mi.

Proof. See Appendix A.2.2.1.

Remark 7. The covering number NΠ
(Hn)−1 depends on the policy

class Π. Without any specific assumptions, the policy class Π that
consists of all the policies π = {πh}Hh=1, πh : S 7→ ∆(A) and the
log ϵ-covering number logNΠ

ϵ = O(|A||S|H log(1 + |A|/ϵ)).

Remark 8. The SL error can be easily improved to a distribution-
dependent bound logN ·Var/

√
n, where N is the covering number

term denoted in I1, Var = maxπ Vc∼CV
π
c,1(x1) is the variance of

the context distribution, by using a Bernstein-type concentration
inequality in our proof. Therefore, for the singleton environment
case where |C| = 1, our suboptimality gap reduces to the one of
PEVI in [91].

Remark 9. In real-world settings, as the number of sampled con-
texts n may be very large, it is unrealistic to manage n models si-
multaneously in the implementation of PERM algorithm, thus we
provide the suboptimality bound in line with Theorem 4.4.1 when
the offline dataset is merged into m contexts such that m < n.
See Theorem A.2.7 in Appendix A.2.3.

Theorem 4.4.1 shows that the ZSG gap of PERM is bounded
by two terms I1 and I2. I1, which we call supervised learning
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Algorithm 5 Pessimistic Proximal Policy Optimzation (PPPO)
Require: Offline dataset D = {Di}ni=1,Di := {(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1, confi-

dence probability δ ∈ (0, 1), a pessimistic offline policy evaluation algorithm
Evaluation as a subroutine.

1: Set Di,h = {(xτ ·H+h
i,h , aτ ·H+h

i,h , rτ ·H+h
i,h , xτ ·H+h

i,h+1 )}⌊K/H⌋−1
τ=0

2: Set π0,h(·|·) as uniform distribution over A and Q̂π0
0,h(·, ·) as zero functions.

3: for i = 1, 2, · · · , n do
4: Set πi,h(·|·) ∝ πi−1,h(·|·) · exp(α · Q̂πi−1

i−1,h(·, ·))
5: Set [·, . . . , ·, Q̂πi

i,1(·, ·), . . . , Q̂
πi
i,H(·, ·)] = Evaluation({Di,h}Hh=1, πi, δ/(nH))

6: end for
7: return πPPPO = random(π1, ..., πn)

error, depends on the number of environments n in the offline
dataset D and the covering number of the function (policy) class,
which is similar to the generalization error in supervised learning.
I2, which we call it reinforcement learning error, is decided by the
optimal policy π∗ that achieves the best zero-shot generalization
performance and the uncertainty quantifier Γi,h. In general, I2 is
the “intrinsic uncertainty” denoted by [91] over n MDPs, which
characterizes how well each dataset Di covers the optimal policy
π∗.

4.4.3 Model-free approach: pessimistic proximal policy
optimization

PERM in Algorithm 4 works as a general model-based algo-
rithm framework to enable ZSG for any pessimistic policy evalu-
ation oracle. However, note that in order to implement PERM,
one needs to maintain n different models or critic functions si-
multaneously in order to evaluate

∑n
i=1 V̂

π
i,1(x1) for any candidate

policy π. Note that existing online RL [110] achieves ZSG by
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a model-free approach, which only maintains n policies rather
than models/critic functions. Therefore, one natural question is
whether we can design a model-free offline RL algorithm also with
access only to policies.

We propose the pessimistic proximal policy optimization (PPPO)
in Algorithm 5 to address this issue. Our algorithm is inspired
by the optimistic PPO [217] originally proposed for online RL.
PPPO also adapts PPE as its subroutine to evaluate any given
policy pessimistically. Unlike PERM, PPPO only maintains n

policies π1, ..., πn, each of them is associated with an MDP Mn

from the offline dataset. In detail, PPPO assigns an order for
MDPs in the offline dataset and names them M1, ...,Mn. For
i-th MDPMi, PPPO selects the i-th policy πi as the solution of
the proximal policy optimization starting from πi−1, which is

πi ← argmax
π

V π
i−1,1(x1)− α−1Ei−1,πi−1

[KL(π‖πi−1)|s1 = x1],

(4.2)

where α is the step size parameter. Since V π
i−1,1(x1) is not achiev-

able, we use a linear approximation Li−1(π) to replace V π
i−1,1(x1),

where

Li−1(π) = V
πi−1

i−1,1(x1) + Ei−1,πi−1

[ H∑
h=1

〈Q̂πi−1

i−1,h(xh, ·), πh(·|xh)− πi−1,h(·|xh)〉
∣∣∣∣s1 = x1

]
,

(4.3)

where Q̂
πi−1

i−1,h ≈ Q
πi−1

i−1,h are the Q values evaluated on the offline
dataset for Mi−1. (4.2) and (4.3) give us a close-form solution
of π in Line 4 in Algorithm 5. Such a routine corresponds to
one iteration of PPO [218]. Finally, PPPO outputs πPPPO as a
random selection from π1, ..., πn.
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Remark 10. In Algorithm 5, we adopt a data-splitting trick [91]
to build Di,h, where we only utilize each trajectory once for one
data tuple at some stage h. It is only used to avoid the statistical
dependency of V̂ πi

i,h+1(·) and xτi,h+1 for the purpose of theoretical
analysis.

The following theorem bounds the suboptimality of PPPO.
Theorem 4.4.2. Set the Evaluation subroutine in Algorithm 5
as Algorithm 3. Let Γi,h be the uncertainty quantifier returned
by O through the PPPO. Selecting α = 1/

√
H2n. Then selecting

δ = 1/8, w.p. at least 2/3, we have

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n︸ ︷︷ ︸
I1:SL error

+
1

n

n∑
i=1

H∑
h=1

Ei, π∗Γi,h(sh, ah)|s1 = x1︸ ︷︷ ︸
I2:RL error

)
.

where Ei,π∗ is w.r.t. the trajectory induced by π∗ with the transi-
tion Pi in the underlying MDP Mi.

Proof. See Appendix A.2.2.2.

Remark 11. As in Remark 9, we also provide the suboptimal-
ity bound in line with Theorem 4.4.2 when the offline dataset is
merged into m contexts such that m < n. See Theorem A.2.8 in
Appendix A.2.3.

Theorem 4.4.2 shows that the suboptimality gap of PPPO can
also be bounded by the SL error I1 and RL error I2. Interestingly,
I1 in Theorem 4.4.2 for PPPO only depends on the cardinality of
the action space |A|, which is different from the covering num-
ber term in I1 for PERM. Such a difference is due to the fact
that PPPO outputs the final policy πPPPO as a random selection
from n existing policies, while PERM outputs one policy πPERM.
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Whether these two guarantees can be unified into one remains an
open question.

4.5 Provable generalization for offline linear
MDPs

In this section, we instantiate our Algo.4 and Algo.5 for general
MDPs on specific MDP classes. We consider the linear MDPs
defined as follows.

Assumption 4.1 ([219, 220]). We assume ∀i ∈ C,Mi is a linear
MDP with a known feature map ϕ : S × A → Rd if there exist d

unknown measures µi,h = (µ
(1)
i,h , . . . , µ

(d)
i,h) over S and an unknown

vector θi,h ∈ Rd such that

Pi,h(x
′ | x, a) = 〈ϕ(x, a), µi,h(x

′)〉,

E
[
ri,h(sh, ah)

∣∣ sh = x, ah = a
]
= 〈ϕ(x, a), θi,h〉 (4.4)

for all (x, a, x′) ∈ S × A × S at every step h ∈ [H]. We assume
‖ϕ(x, a)‖ ≤ 1 for all (x, a) ∈ S ×A and max{‖µi,h(S)‖, ‖θi,h‖} ≤√
d at each step h ∈ [H], and we define ‖µi,h(S)‖ =

∫
S ‖µi,h(x)‖ dx.

We first specialize the general PPE algorithm (Algo.3) to ob-
tain the PPE algorithm tailored for linear MDPs (Algo.6). This
specialization is achieved by constructing B̂i,hV̂

π
i,h+1, Γi,h, and V̂ π

i,h

based on the dataset Di. We denote the set of trajectory indexes
in Di,h as Bi,h. Algo.6 subsequently functions as the policy evalu-
ation subroutine in Algo.4 and Algo.5 for linear MDPs. In detail,
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we construct B̂i,hV̂i,h+1 (which is the estimation of Bi,hV̂i,h+1) as
(B̂i,hV̂i,h+1)(x, a) = ϕ(x, a)>ŵi,h, where

ŵi,h = argminw∈Rd

∑
τ∈Bi,h

(
rτi,h + V̂i,h+1(x

−,τ
i,h )− ϕ(xτi,h, a

τ
i,h)
>w
)2

+ λ · ‖w‖22
(4.5)

with λ > 0 being the regularization parameter. The closed-form
solution to (4.5) is in Line 4 in Algorithm 6. Besides, we construct
the uncertainty quantifier Γi,h based on Di as

Γi,h(x, a) = β(δ) · ‖ϕ(x, a)‖Λ−1
i,h
,Λi,h =

∑
τ∈Bi,h

ϕ(xτi,h, a
τ
i,h)ϕ(x

τ
i,h, a

τ
i,h)
> + λ · I,

with β(δ) > 0 being the scaling parameter.

Algorithm 6 Pessimistic Policy Evaluation (PPE): Linear MDP
Require: Offline dataset {Di,h}Hh=1,Di,h = {(xτi,h, aτi,h, rτi,h, x

−,τ
i,h )}τ∈Bi,h

, policy π,
confidence probability δ ∈ (0, 1).

1: Initialize V̂ π
i,H+1(·)← 0, ∀i ∈ [n].

2: for step h = H,H − 1, . . . , 1 do
3: Set Λi,h ←

∑
τ∈Bi,h

ϕ(xτi,h, a
τ
i,h)ϕ(x

τ
i,h, a

τ
i,h)

⊤ + λ · I.
4: Set ŵi,h ← Λ−1

i,h(
∑

τ∈Bi,h
ϕ(xτi,h, a

τ
i,h) · (rτi,h + V̂ π

i,h+1(x
−,τ
i,h ))).

5: Set Γi,h(·, ·)← β(δ) · (ϕ(·, ·)⊤Λ−1
i,hϕ(·, ·))

1/2.
6: Set Q̂π

i,h(·, ·)← min{ϕ(·, ·)⊤ŵi,h − Γi,h(·, ·),H − h+ 1}+.
7: Set V̂ π

i,h(·)← 〈Q̂π
i,h(·, ·), πh(·|·)〉A

8: end for
9: return V̂ π

i,1(·), . . . , V̂ π
i,H(·), Q̂π

i,1(·, ·), . . . , Q̂π
i,H(·, ·).

The following theorem shows the suboptimality gaps for Algo.4
(utilizing subroutine Algo.6) and Algo.5 (also with subroutine
Algo.6).

Theorem 4.5.1. Under Assumption 4.1, in Algorithm 6, we set
λ = 1, β(δ) = c · dH

√
log(2dHK/δ), where c > 0 is a positive
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constant. Then, we have:
(i) for the output policy πPERM of Algo.4 with subroutine Algo.6,
w.p. at least 1− δ, the suboptimality gap satisfies

SubOpt(πPERM) ≤ 7

√
7 log(6NΠ

(Hn)−1/δ)

n

+
2β
(

δ
3nHNΠ

(Hn)−1

)
n

·
n∑

i=1

H∑
h=1

Ei,π∗

[
‖ϕ(sh, ah)‖Λ̃−1

i,h

∣∣ s1 = x1

]
,

(4.6)

(ii) for the output policy πPPPO of Algo.5 with subroutine Algo.6,
setting δ = 1/8, then with probability at least 2/3, the subopti-
mality gap satisfies

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n
+

β
(

1
4nH

)
n

·
n∑

i=1

H∑
h=1

Ei,π∗

[
‖ϕ(sh, ah)‖Λ̄−1

i,h

∣∣ s1 = x1

])
,

(4.7)

where Ei,π∗ is with respect to the trajectory induced by π∗ with the
transition Pi in the underlying MDP Mi given the fixed matrix
Λ̃i,h or Λ̄i,h.

‖ϕ(sh, ah)‖Λ−1
i,h

indicates how well the state-action pair (sh, ah)

is covered by the datasetDi.
∑n

i=1

∑H
h=1 Ei,π∗

[
‖ϕ(sh, ah)‖Λ−1

i,h

∣∣ s1 =
x1

]
in the suboptimality gap in Theorem 4.5.1 is small if for each

context i ∈ [n], the dataset Di well covers the trajectory induced
by the optimal policy π∗ on the corresponding MDPMi.
Well-explored behavior policy Next we consider a case where
the dataset D consists of i.i.d. trajectories collecting from differ-
ent environments. Suppose D consists of n independent datasets
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D1, . . . ,Dn, and for each environment i, Di consists of K trajec-
tories Di = {(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1 independently and identically
induced by a fixed behavior policy π̄i in the linear MDPMi. We
have the following assumption on well-explored policy:

Definition 4.3 ([221, 91]). For an behavior policy π̄ and an
episodic linear MDP M with feature map ϕ, we say π̄ well-
explores M with constant c if there exists an absolute positive
constant c > 0 such that

∀h ∈ [H], λmin(Σh) ≥ c/d,where Σh = Eπ̄,M
[
ϕ(sh, ah)ϕ(sh, ah)

>].
A well-explored policy guarantees that the obtained trajecto-

ries is “uniform” enough to represent any policy and value func-
tion. The following corollary shows that with the above assump-
tion, the suboptimality gaps of Algo.4 (with subroutine Algo.6)
and Algo.5 (with subroutine Algo.6) decay to 0 when n and K

are large enough.

Corollary 4.1. Suppose that for each i ∈ [n], Di is generated
by behavior policy π̄i which well-explores MDP Mi with constant
ci ≥ cmin. In Algo.6, we set λ = 1, β(δ) = c′ · dH

√
log(4dHK/δ)

where c′ > 0 is a positive constant. Suppose we have K ≥
40d/cmin log(4dnH/δ) and set C∗n := 1/n ·

∑n
i=1 c

−1/2
i . Then we

have:
(i) for the output πPERM of Algo.4 with subroutine Algo.6, w.p. at
least 1− δ, the suboptimality gap satisfies
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SubOpt(πPERM) ≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n

+ 2
√
2c′ · d3/2H2K−1/2

√
log(12dHnKNΠ

(Hn)−1/δ) · C∗n , (4.8)

(ii) for the output policy πPPPO of Algo.5 with subroutine Algo.6,
setting δ = 1/8, then with probability at least 2/3, the subopti-
mality gap satisfies

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n
+ 2
√
2c′ · d3/2H2.5K−1/2

√
log(16dHnK) · C∗

n

)
.

(4.9)

Remark 12. The mixed coverage parameter C∗n = 1
n

∑n
i=1

1√
ci

is
small if for any i ∈ [n], ci is large, i.e., the minimum eigenvalue
of Σi,h = Eπ̄i,Mi

[
ϕ(sh, ah)ϕ(sh, ah)

>] is large. Note that λmin(Σi,h)

indicates how well the behavior policy π̄i explores the state-action
pairs on MDPMi; this shows that if for each environment i ∈ [n],
the behavior policy explores Mi well, the suboptimality gap will
be small.

Remark 13. Under the same conditions of Corollary 4.1:
(i) If n ≥

392 log(6NΠ
(Hn)−1/δ)

ϵ2

and K ≥ max{ 40d
cmin

log(4dnHδ ),
32c′2d3H4 log(12dHnKNΠ

(Hn)−1/δ)C
∗2
n

ϵ2 }, then
w.p. at least 1− δ, SubOpt(πPERM) ≤ ϵ.
(ii) If n ≥ 400H2 log(|A|)

ϵ2

and K ≥ max{ 40d
cmin

log(16dnH), 32c
′2d3H5 log(16dHnK)C∗2

n

ϵ2 }, then w.p.
at least 2/3, SubOpt(πPPPO) ≤ ϵ.

Corollary 4.1 suggests that both of our proposed algorithms en-
joy the O(n−1/2+K−1/2 ·C∗n) convergence rate to the optimal pol-
icy π∗ given a well-exploration data collection assumption, where



4.5. PROVABLE GENERALIZATION FOR OFFLINE LINEAR MDPS 63

C∗n is a mixed coverage parameter over n environments defined in
Corollary 4.1.



Chapter 5

Online Clustering of Bandits
with Misspecified User Models

The contextual linear bandit is an important online learning prob-
lem where given arm features, a learning agent selects an arm at
each round to maximize the cumulative rewards in the long run. A
line of works, called the clustering of bandits (CB), utilize the col-
laborative effect over user preferences and have shown significant
improvements over classic linear bandit algorithms. However, ex-
isting CB algorithms require well-specified linear user models and
can fail when this critical assumption does not hold. Whether
robust CB algorithms can be designed for more practical sce-
narios with misspecified user models remains an open problem.
In this paper, we are the first to present the important problem
of clustering of bandits with misspecified user models (CBMUM),
where the expected rewards in user models can be perturbed away
from perfect linear models. We devise two robust CB algorithms,
RCLUMB and RSCLUMB (representing the learned clustering
structure with dynamic graph and sets, respectively), that can
accommodate the inaccurate user preference estimations and er-

64
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roneous clustering caused by model misspecifications. We prove
regret upper bounds of O(ϵ∗T

√
md logT + d

√
mT logT ) for our

algorithms under milder assumptions than previous CB works
(notably, we move past a restrictive technical assumption on the
distribution of the arms), which match the lower bound asymp-
totically in T up to logarithmic factors, and also match the state-
of-the-art results in several degenerate cases. The techniques in
proving the regret caused by misclustering users are quite general
and may be of independent interest. Experiments on both syn-
thetic and real-world data show our outperformance over previous
algorithms. This chapter is based on our publication [4].

5.1 Introduction

Stochastic multi-armed bandit (MAB) [222, 223, 139] is an online
sequential decision-making problem, where the learning agent se-
lects an action and receives a corresponding reward at each round,
so as to maximize the cumulative reward in the long run. MAB
algorithms have been widely applied in recommendation systems
and computer networks to handle the exploration and exploita-
tion trade-off [38, 39, 7, 40].

To deal with large-scale applications, the contextual linear
bandits [41, 42, 43, 44, 45] have been studied, where the ex-
pected reward of each arm is assumed to be perfectly linear in
their features. Leveraging the contextual side information about
the user and arms, linear bandits can provide more personalized
recommendations [224]. Classical linear bandit approaches, how-
ever, ignore the often useful tool of collaborative filtering. To
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utilize the relationships among users, the problem of clustering of
bandits (CB) has been proposed [46]. Specifically, CB algorithms
adaptively partition users into clusters and utilize the collabora-
tive effect of users to enhance learning performance.

Although existing CB algorithms have shown great success in
improving recommendation qualities, there exist two major limi-
tations. First, all previous works on CB [46, 135, 136, 225] assume
that for each user, the expected rewards follow a perfectly linear
model with respect to the user preference vector and arms’ fea-
ture vectors. In many real-world scenarios, due to feature noises
or uncertainty [47], the reward may not necessarily conform to
a perfectly linear function, or even deviates a lot from linearity
[48]. Second, previous CB works assume that for users within
the same cluster, their preferences are exactly the same. Due
to the heterogeneity in users’ personalities and interests, similar
users may not have identical preferences, invalidating this strong
assumption.

To address these issues, we propose a novel problem of cluster-
ing of bandits with misspecified user models (CBMUM). In CB-
MUM, the expected reward model of each user does not follow
a perfectly linear function but with possible additive deviations.
We assume users in the same underlying cluster share a common
preference vector, meaning they have the same linear part in re-
ward models, but the deviation parts are allowed to be different,
better reflecting the varieties of user personalities.

The relaxation of perfect linearity and the reward homogeneity
within the same cluster bring many challenges to the CBMUM
problem. In CBMUM, we not only need to handle the uncer-



5.1. INTRODUCTION 67

tainty from the unknown user preference vectors, but also have
to tackle the additional uncertainty from model misspecifications.
Due to such uncertainties, it becomes highly challenging to design
a robust algorithm that can cluster the users appropriately and
utilize the clustered information judiciously. On the one hand,
the algorithm needs to be more tolerant in the face of misspeci-
fications so that more similar users can be clustered together to
utilize the collaborative effect. On the other hand, it has to be
more selective to rule out the possibility of misclustering users
with large preference gaps.

5.1.1 Our Contributions

This paper makes the following four contributions.
New Model Formulation. We are the first to formulate the
clustering of bandits with misspecified user models (CBMUM)
problem, which is more practical by removing the perfect linearity
assumption in previous CB works.
Novel Algorithm Designs. We design two novel algorithms,
RCLUMB and RSCLUMB, which robustly learn the clustering
structure and utilize this collaborative information for faster user
preference elicitation. Specifically, RCLUMB keeps updating a
dynamic graph over all users, where users connected directly by
edges are supposed to be in the same cluster. RCLUMB adap-
tively removes edges and recommends items based on historical
interactions. RSCLUMB represents the clustering structure with
sets, which are dynamicly merged and split during the learning
process. Due to the page limit, we only illustrate the RCLUMB
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algorithm in the main paper. We leave the exposition, illustra-
tion, and regret analysis of the RSCLUMB algorithm in Appendix
A.3.11.

To overcome the challenges brought by model misspecifica-
tions, we do the following key steps in the RCLUMB algorithm.
(i) To ensure that with high probability, similar users will not be
partitioned apart, we design a more tolerant edge deletion rule
by taking model misspecifications into consideration. (ii) Due to
inaccurate user preference estimations caused by model misspec-
ifications, trivially following previous CB works [46, 135, 137] to
directly use connected components in the maintained graph as
clusters would miscluster users with big preference gaps, causing
a large regret. To be discriminative in cluster assignments, we
filter users directly linked with the current user in the graph to
form the cluster used in this round. With these careful designs of
(i) and (ii), we can guarantee that with high probability, infor-
mation of all similar users can be leveraged, and only users with
close enough preferences might be misclustered, which will only
mildly impair the learning accuracy. Additionally: (iii) we design
an enlarged confidence radius to incorporate both the exploration
bonus and the additional uncertainty from misspecifications when
recommending arms. The design of RSCLUMB follows similar
ideas, which we leave in the Appendix A.3.11 due to page limit.
Theoretical Analysis with Milder Assumptions. We prove
regret upper bounds for our algorithms of O(ϵ∗T

√
md logT +

d
√
mT logT ) in CBMUM under much milder and practical as-

sumptions (in arm generation distribution) than previous CB
works, which match the state-of-the-art results in degenerate cases.
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Our proof is quite different from the typical proof flow of previ-
ous CB works (details in Appendix A.3.3). One key challenge is
to bound the regret caused by misclustering users with close but
not the same preference vectors and use the inaccurate cluster-
based information to recommend arms. To handle the challenge,
we prove a key lemma (Lemma 5.4.4) to bound this part of re-
gret. We defer its details in Section 5.4 and Appendix A.3.7. The
techniques and results for bounding this part are quite general
and may be of independent interest. We also give a regret lower
bound of Ω(ϵ∗T

√
d) for CBMUM, showing that our upper bounds

are asymptotically tight with respect to T up to logarithmic fac-
tors. We leave proving a tighter lower bound for CBMUM as an
open problem.
Good Experimental Performance. Extensive experiments on
both synthetic and real-world data show the advantages of our
proposed algorithms over the existing algorithms.

5.2 Problem Setup
This section formulates the problem of “clustering of bandits with
misspecified user models” (CBMUM). We use boldface lowercase
and boldface CAPITALIZED letters for vectors and matrices.
We use |A| to denote the number of elements in A, [m] to denote
{1, . . . ,m}, and ‖x‖M =

√
x>Mx to denote the matrix norm of

vector x regarding the positive semi-definite (PSD) matrix M .
In CBMUM, there are u users denoted by U = {1, 2, . . . , u}.

Each user i ∈ U is associated with an unknown preference vec-
tor θi ∈ Rd, with ‖θi‖2 ≤ 1. We assume there is an unknown
underlying clustering structure over users representing the simi-
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larity of their behaviors. Specifically, U can be partitioned into
a small number m (i.e., m � u) clusters, V1, V2, . . . Vm, where
∪j∈[m]Vj = U , and Vj ∩ Vj′ = ∅, for j 6= j′. We call these clusters
ground-truth clusters and use V = {V1, V2, . . . , Vm} to denote the
set of these clusters. Users in the same ground-truth cluster share
the same preference vector, while users from different ground-
truth clusters have different preference vectors. Let θj denote the
common preference vector for Vj and j(i) ∈ [m] denote the index
of the ground-truth cluster that user i belongs to. For any ℓ ∈ U ,
if ℓ ∈ Vj(i), then θℓ = θi = θj(i).

At each round t ∈ [T ], a user it ∈ U comes to be served. The
learning agent receives a finite arm set At ⊆ A to choose from
(with |At| ≤ C, ∀t), where each arm a ∈ A is associated with
a feature vector xa ∈ Rd, and ‖xa‖2 ≤ 1. The agent assigns
an appropriate cluster V t for user it and recommends an item
at ∈ At based on the aggregated historical information gathered
from cluster V t. After receiving the recommended item at, user
it gives a random reward rt ∈ [0, 1] to the agent. To better
model real-world scenarios, we assume that the reward rt follows
a misspecified linear function of the item feature vector xat and
the unknown user preference vector θit. Formally,

rt = x⊤
atθit + ϵit,tat + ηt , (5.1)

where ϵit,t = [ϵit,t1 , ϵit,t2 , . . . , ϵit,t|At|]
> ∈ R|At| denotes the unknown

deviation in the expected rewards of arms in At from linearity
for user it at t, and ηt is the 1-sub-Gaussian noise. We allow the
deviation vectors for users in the same ground-truth cluster to be
different.

We assume the clusters, users, items, and model misspecifica-
tions satisfy the following assumptions.
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Assumption 5.1 (Gap between different clusters). The gap be-
tween any two preference vectors for different ground-truth clus-
ters is at least an unknown positive constant γ∥∥∥θj − θj′

∥∥∥
2
≥ γ > 0 , ∀j, j′ ∈ [m] , j 6= j′ .

Assumption 5.2 (Uniform arrival of users). At each round t, a
user it comes uniformly at random from U with probability 1/u,
independent of the past rounds.

Assumption 5.3 (Item regularity). At each time step t, the fea-
ture vector xa of each arm a ∈ At is drawn independently from a
fixed but unknown distribution ρ over {x ∈ Rd : ‖x‖2 ≤ 1}, where
Ex∼ρ[xx

>] is full rank with minimal eigenvalue λx > 0. Addi-
tionally, at any time t, for any fixed unit vector θ ∈ Rd, (θ>x)2

has sub-Gaussian tail with variance upper bounded by σ2.

Assumption 5.4 (Bounded misspecification level). We assume
that there is a pre-specified maximum misspecification level pa-
rameter ϵ∗ such that

∥∥ϵi,t∥∥∞ ≤ ϵ∗, ∀i ∈ U , t ∈ [T ].

Remark 1. All these assumptions basically follow previous works
on CB [46, 226, 135, 227, 137] and MLB [138]. Note that Assump-
tion 9.4 is less stringent and more practical than previous CB
works which also put restrictions on the variance upper bound σ2.
For Assumption 9.3, our results can easily generalize to the case
where the user arrival follows any distributions with minimum
arrival probability greater than pmin. For Assumption 9.1, note
that ϵ∗ can be an upper bound on the maximum misspecification
level, not the exact maximum itself. In real-world applications,
the deviations are usually small [48], and we can set a relatively
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big ϵ∗ as an upper bound. For more discussions please refer to
Appendix A.3.2

Let a∗t ∈ argmaxa∈At
x>a θit + ϵit,ta denote an optimal arm which

gives the highest expected reward at t. The goal of the agent is
to minimize the expected cumulative regret

R(T ) = E[
∑T

t=1(x
⊤
a∗t
θit + ϵit,ta∗t

− x⊤
atθit − ϵit,tat )] . (5.2)

5.3 Algorithm

This section introduces our algorithm called “Robust CLUster-
ing of Misspecified Bandits” (RCLUMB) (Algo.7). RCLUMB is
a graph-based algorithm. The ideas and techniques of RCLUMB
can be easily generalized to set-based algorithms. To illustrate
this generalizability, we also design a set-based algorithm RSCLUMB.
We leave the exposition and analysis of RSCLUMB in Appendix
A.3.11.

For ease of interpretation, we define the coefficient

ζ ≜ 2ϵ∗

√
2

λ̃x

, (5.3)

where λ̃x ≜
∫ λx

0 (1−e−
(λx−x)2

2σ2 )Cdx. ζ is theoretically the minimum
gap between two users’ preference vectors that an algorithm can
distinguish with high probability, as supported by Eq.(A.129) in
the proof of Lemma A.3.2 in Appendix A.3.8. Note that the
algorithm does not require knowledge of ζ. We also make the
following definition for illustration.

Definition 5.1 (ζ-close users and ζ-good clusters). Two users
i, i′ ∈ U are ζ-close if ‖θi − θi′‖2 ≤ ζ. Cluster V is a ζ-good
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Algorithm 7 Robust Clustering of Misspecified Bandits Algorithm
(RCLUMB)

1: Input: Deletion parameter α1, α2 > 0, f(T ) =
√

1+ln(1+T )
1+T

, λ, β, ϵ∗ > 0.
2: Initialization: Mi,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0 , ∀i ∈ U ; a complete

Graph G0 = (U , E0) over U .
3: for all t = 1, 2, . . . , T do
4: Receive the index of the current user it ∈ U , and the current feasible

arm set At;
5: Filter user it and users i ∈ U that are directly connected with user it via

edge (i, it) ∈ Et−1, to form the cluster V t;
6: Compute the estimated statistics for cluster V t

MV t,t−1 = λI +
∑

i∈V t
Mi,t−1 , bV t,t−1 =

∑
i∈V t

bi,t−1 , θ̂V t,t−1 = M
−1

V t,t−1bV t,t−1;

7: Recommend an arm at with the largest UCB index (Eq.(6.3)), and re-
ceive the reward rt ∈ [0, 1];

8: Update the statistics for user it Mit,t = Mit,t−1+xatx
⊤
at , bit,t = bit,t−1+

rtxat , Tit,t = Tit,t−1 + 1 , θ̂it,t = (λI +Mit,t)
−1bit,t;

9: Keep the statistics of other users unchanged
Mℓ,t = Mℓ,t−1, bℓ,t = bℓ,t−1, Tℓ,t = Tℓ,t−1, θ̂ℓ,t = θ̂ℓ,t−1, for all ℓ ∈ U , ℓ 6=
it;

10: Delete the edge (it, ℓ) ∈ Et−1, if∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥
2
≥ α1

(
f(Tit,t) + f(Tℓ,t)

)
+ α2ϵ∗ ,

and get an updated graph Gt = (U , Et);
11: end for

cluster at time t, if ∀ i ∈ V , user i and the coming user it are
ζ-close.

We also say that two ground-truth clusters are “ζ-close” if their
preference vectors’ gap is less than ζ.

Now we introduce the process and intuitions of RCLUMB
(Algo.7). The algorithm maintains an undirected user graph
Gt = (U , Et), where users are connected with edges if they are
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inferred to be in the same cluster. We denote the connected com-
ponent in Gt−1 containing user it at round t as Ṽt.
Cluster Detection. G0 is initialized to be a complete graph, and
will be updated adaptively based on the interactive information.
At round t, user it ∈ U comes to be served with a feasible arm
set At (Line 4).

Due to model misspecifications, it is impossible to cluster users
with exactly the same preference vector θ, but similar users whose
preference vectors are within the distance of ζ. According to the
proof of Lemma A.3.2, after a sufficient time, with high proba-
bility, any pair of users directly connected by an edge in Et−1 are
ζ-close. However, if we trivially follow previous CB works [46,
135, 137] to directly use the connected component Ṽt as the in-
ferred cluster for user it at round t, it will cause a large regret.
The reason is that in the worst case, the preference vector θ of
the user in Ṽt who is h-hop away from user it could deviate by hζ

from θit, where h can be as large as |Ṽt|. Based on this reasoning,
our key point is to select the cluster V t as the users at most 1-hop
away from it in the graph. In other words, after some interactions,
V t forms a ζ-good cluster with high probability; thus, RCLUMB
can avoid using misleading information from dissimilar users for
recommendations.
Cluster-based Recommendation. After finding the appropri-
ate cluster V t for it, the agent estimates the common user pref-
erence vector based on the historical information associated with
cluster V t by
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θ̂V t,t−1 = argmin
θ∈Rd

∑
s∈[t−1]

is∈V t

(rs − x>asθ)
2 + λ ‖θ‖22 , (5.4)

where λ > 0 is a regularization coefficient. Its closed-form
solution is θ̂V t,t−1 = M

−1
V t,t−1bV t,t−1,

where MV t,t−1 = λI +
∑

s∈[t−1]

is∈V t

xasx
>
as
, bV t,t−1 =

∑
s∈[t−1]

is∈V t

rasxas .
Based on this estimation, in Line 7, the agent recommends an

arm using the UCB strategy

at = argmax
a∈At

min{1,x⊤
a θ̂V t,t−1︸ ︷︷ ︸

R̂a,t

+β ‖xa‖M−1

V t,t−1

+ ϵ∗
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1
V t,t−1xas

∣∣∣︸ ︷︷ ︸
Ca,t

} ,

(5.5)

where β =
√
λ+

√
2 log(1δ ) + d log(1 + T

λd), R̂a,t denotes the estimated
reward of arm a at t, Ca,t denotes the confidence radius of arm a

at round t.
Due to deviations from linearity, the estimation R̂a,t computed

by a linear function is no longer accurate. To handle the estima-
tion uncertainty of model misspecifications, we design an enlarged
confidence radius Ca,t. The first term of Ca,t in Eq.(6.3) captures
the uncertainty of online learning for the linear part, and the sec-
ond term related to ϵ∗ reflects the additional uncertainty from
deviations from linearity. The design of Ca,t theoretically relies
on Lemma 6.4.2 which will be given in Section 5.4.
Update User Statistics. Based the feedback rt, in Line 8 and
9, the agent updates the statistics for user it. Specifically, the
agent estimates the preference vector θit by

θ̂it,t = argmin
θ∈Rd

∑
s∈[t]
is=it

(rs − x>asθ)
2 + λ ‖θ‖22 , (5.6)
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with solution θ̂it,t = (λI +Mit,t)
−1bit,t ,

where Mit,t =
∑

s∈[t]
is=it

xasx
>
as
, bit,t =

∑
s∈[t]
is=it

rasxas .

Update the Graph Gt. Finally, in Line 10, the agent veri-
fies whether the similarities between user it and other users are
still true based on the updated estimation θ̂it,t. For every user
ℓ ∈ U connected with user it via edge (it, ℓ) ∈ Et−1, if the gap
between her estimated preference vector θ̂ℓ,t and θ̂it,t is larger
than a threshold supported by Lemma A.3.2, the agent will delete
the edge (it, ℓ) to split them apart. The threshold in Line 10 is
carefully designed, taking both estimation uncertainty in a lin-
ear model and deviations from linearity into consideration. As
shown in the proof of Lemma A.3.2 (in Appendix A.3.8), using
this threshold, with high probability, edges between users in the
same ground-truth clusters will not be deleted, and edges between
users that are not ζ-close will always be deleted. Together with
the filtering step in Line 5, with high probability, the algorithm
will leverage all the collaborative information of similar users and
avoid misusing the information of dissimilar users. The updated
graph Gt will be used in the next round.

5.4 Theoretical Analysis

In this section, we theoretically analyze the performance of the
RCLUMB algorithm by giving an upper bound of the expected re-
gret defined in Eq.(6.1). Due to the space limitation, we only show
the main result (Theorem 6.4.3), key lemmas, and a sketched
proof for Theorem 6.4.3. Detailed proofs, other technical lem-
mas, and the regret analysis of the RSLUMB algorithm can be



5.4. THEORETICAL ANALYSIS 77

found in the Appendix.
To state our main result, we first give two definitions as follows.

The first definition is about the minimum separable gap constant
γ1 of a CBMUM problem instance.

Definition 5.2 (Minimum separable gap γ1). The minimum sep-
arable gap constant γ1 of a CBMUM problem instance is the min-
imum gap over the gaps among users that are greater than ζ (Eq.
(5.3))

γ1 = min{‖θi − θℓ‖2 : ‖θi − θℓ‖2 > ζ, ∀i, ℓ ∈ U} ,withmin ∅ =∞.

Remark 2. In CBMUM, the role of γ1 − ζ is similar to that
of γ (given in Assumption 9.2) in the previous CB problem with
perfectly linear models, quantifying the hardness of performing
clustering on the problem instance. Intuitively, users are eas-
ier to cluster if γ1 is larger, and the deduction of ζ shows the
additional difficulty due to model diviations. If there are no mis-
specifications, i.e., ζ = 2ϵ∗

√
2
λx

= 0, then γ1 = γ, recovering
the minimum separable gap between clusters in the classic CB
problem [46, 135] without model misspecifications.

The second definition is about the number of “hard-to-cluster
users” ũ.

Definition 5.3 (Number of “hard-to-cluster users” ũ). The num-
ber of “hard-to-cluster users” ũ is the number of users in the
ground-truth clusters which are ζ-close to some other ground-truth
clusters

ũ =
∑
j∈[m]

|Vj| × I{∃j′ ∈ [m], j ′ 6= j :
∥∥∥θj′ − θj

∥∥∥
2
≤ ζ} ,
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where I{·} denotes the indicator function of the argument, |Vj|
denotes the number of users in Vj.

Remark 3. ũ captures the number of users who belong to dif-
ferent ground-truth clusters but their gaps are less than ζ. These
users may be merged into one cluster by mistake and cause certain
regret.

The following theorem gives an upper bound on the expected
regret achieved by RCLUMB.

Theorem 5.4.1 (Main result on regret bound). Suppose that the
assumptions in Section 5.2 are satisfied. Then the expected regret
of the RCLUMB algorithm for T rounds satisfies

R(T ) ≤ O

(
u

(
d

λ̃x(γ1 − ζ)2
+

1

λ̃2
x

)
logT +

ũ

u

ϵ∗
√
dT

λ̃1.5
x

+ ϵ∗T
√

md logT + d
√
mT logT

)
(5.7)

≤ O(ϵ∗T
√

md logT + d
√
mT logT ) , (5.8)

where γ1 is defined in Definition 5.2, and ũ is defined in Definition
5.3).

Discussion and Comparison. The bound in Eq.(5.7) has four
terms. The first term is the time needed to gather enough infor-
mation to assign appropriate clusters for users. The second term
is the regret caused by misclustering ζ-close but not precisely
similar users together, which is unavoidable with model misspeci-
fications. The third term is from the preference estimation errors
caused by model deviations. The last term is the usual term in
CB with perfectly linear models [46, 135, 136].

Let us discuss how the parameters affect this regret bound.
• If γ1−ζ is large, the gaps between clusters that are not “ζ-close”
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are much greater than the minimum gap ζ for the algorithm to
distinguish, the first term in Eq.(5.7) will be small as it is easy
to identify their dissimilarities. The role of γ1 − ζ in CBMUM is
similar to that of γ in the previous CB.
• If ũ is small, indicating that few ground-truth clusters are “ζ-
close”, RCLUMB will hardly miscluster different ground-truth
clusters together thus the second term in Eq.(5.7) will be small.
• If the deviation level ϵ∗ is small, the user models are close to
linearity and the misspecifications will not affect the estimations
much, then both the second and third term in Eq.(5.7) will be
small.
The following theorem gives a regret lower bound of the CBMUM
problem.

Theorem 5.4.2 (Regret lower bound for CBMUM). There exists
a problem instance for the CBMUM problem such that for any
algorithm R(T ) ≥ Ω(ϵ∗T

√
d) .

The proof can be found in Appendix A.3.6. The upper bounds
in Theorem 6.4.3 asymptotically match this lower bound with re-
spect to T up to logarithmic factors (and a constant factor of
√
m where m is typically small in real-applications), showing the

tightness of our theoretical results. Additionally, we conjecture
the gap for the m factor is due to the strong assumption that clus-
ter structures are known to prove this lower bound, and whether
there exists a tighter lower bound is left for future work.

We then compare our results with two degenerate cases. First,
when m = 1 (indicating ũ = 0), our setting degenerates to the
MLB problem where all users share the same preference vector.
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In this case, our regret bound is O(ϵ∗T
√
d logT + d

√
T logT ),

exactly matching the current best bound of MLB [138]. Second,
when ϵ∗ = 0, our setting reduces to the CB problem with perfectly
linear user models and our bounds become O(d

√
mT logT ), also

perfectly match the existing best bound of the CB problem [135,
136]. The above discussions and comparisons show the tightness
of our regret bounds. Additionally, we also provide detailed dis-
cussions on why trivially combining existing works on CB and
MLB would not get any non-vacuous regret upper bound in Ap-
pendix A.3.4.

We define the following “good partition” for ease of interpre-
tation.

Definition 5.4 (Good partition). RCLUMB does a “good parti-
tion” at t, if the cluster V t assigned to it is a ζ-good cluster, and
it contains all the users in the same ground-truth cluster as it,
i.e.,

‖θit − θℓ‖2 ≤ ζ, ∀ℓ ∈ V t , andVj(it) ⊆ V t . (5.9)

Note that when the algorithm does a “good partition” at t, V t

will contain all the users in the same ground-truth cluster as it

and may only contain some other ζ-close users with respect to it,
which means the gathered information associated with V t can be
used to infer user it’s preference with high accuracy. Also, it is
obvious that under a “good partition”, if V t ∈ V , then V t = Vj(it)

by definition.
Next, we give a sketched proof for Theorem 6.4.3.

Proof. [Sketch for Theorem 6.4.3] The proof mainly con-
tains two parts. First, we prove there is a sufficient time T0 for
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RCLUMB to get a “good partition” with high probability. Sec-
ond, we prove the regret upper bound for RCLUMB after main-
taining a “good partition”. The most challenging part is to bound
the regret caused by misclustering ζ-close users after getting a
“good partition”.
1. Sufficient time to maintain a “good partition”. With the
item regularity (Assumption 9.4), we can prove after some T0 (de-
fined in Lemma A.3.2 in Appendix A.3.8), RCLUMB will always
have a “good partition”. After t ≥ O

(
u
(

d
λ̃x(γ1−ζ)2

+ 1
λ̃2
x

)
logT

)
,

for any user i ∈ U , the gap between the estimated θ̂i,t and the
ground-truth θj(i) is less than γ1

4 with high probability. With
this, we can get: for any two users i and ℓ, if their gap is greater
than ζ, it will trigger the deletion of the edge (i, ℓ) (Line 10 of
Algo.7) with high probability; on the other hand, when the dele-
tion condition of the edge (i, ℓ) is satisfied, then ∥∥θj(i) − θj(ℓ)

∥∥
2
> 0 ,

which means user i and ℓ belong to different ground-truth clusters
by Assumption 9.2 with high probability. Therefore, we can get
that with high probability, all those users in the same ground-
truth cluster as it will be directly connected with it, and users
directly connected with it must be ζ-close to it. By filtering users
directly linked with it as the cluster V t (Algo.7 Line 5) and the
definition of “good partition”, we can ensure that RCLUMB will
keep a “good partition” afterward with high probability.
2. Bounding the regret after getting a “good partition”.
After T0, with the “good partition”, we can prove the following
lemma that gives a bound of the difference between θ̂V t,t−1 and
ground-truth θit in direction of action vector xa, and supports
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the design of the confidence radius Ca,t in Eq.(6.3).
Lemma 5.4.3. With probability at least 1−5δ for some δ ∈ (0, 15),
∀t ≥ T0∣∣∣x⊤

a (θit − θ̂V t,t−1)
∣∣∣ ≤ ϵ∗

√
2d

λ̃
3
2
x

I{V t /∈ V}+ϵ∗
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1
V t,t−1xas

∣∣∣+β ‖xa‖M−1

V t,t−1

.

To prove this lemma, we consider the following two situations.
(i) Assigning a perfect cluster for it. In this case, V t ∈
V , meaning the cluster assigned for user it is the same as her
ground-truth cluster, i.e., V t = Vj(it). Therefore, we have that
∀ℓ ∈ V t,θℓ = θit. With careful analysis, we can bound

∣∣∣x⊤
a (θit − θ̂V t,t−1)

∣∣∣
by Ca,t (defined in Eq.(6.3)).
(ii) Bounding the term of misclustering it’s ζ-close users.
In this case, V t /∈ V , meaning the algorithm misclusters user it,
i.e., V t 6= Vj(it). Thus, we do not have ∀ℓ ∈ V t,θℓ = θit anymore,
but we have all the users in V t are ζ-close to it (by “good par-
tition”), i.e., ‖θis − θit‖2 ≤ ζ , ∀ℓ ∈ V t. Then an additional term
can be caused by using the information of it’s ζ-close users in V t

lying in different ground-truth clusters from it to estimate θit. It
is highly challenging to bound this part.

We will get an extra term
∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∣∣∣∣ when
bounding the regret in this case, where ‖θℓ − θit‖2 ≤ ζ , ∀ℓ ∈ V t.
It is an easy-to-be-made mistake to directly drag ‖θis − θit‖2 out
to bound it by

∥∥∥∥x⊤
a M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as

∥∥∥∥
2

× ζ . With subtle analysis,
we propose the following lemma to bound the above term.

Lemma 5.4.4 (Bound of error caused by misclustering). ∀t ≥ T0,
if the current partition by RCLUMB is a “good partition”, and
V t /∈ V, then for all xa ∈ Rd, ‖xa‖2 ≤ 1, with probability at least
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1− δ: ∣∣∣∣x>aM−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasx
>
as
(θis − θit)

∣∣∣∣ ≤ ϵ∗
√
2d

λ̃
3
2
x

.

This lemma is quite general. Please see Appendix A.3.7 for
details about its proof.

The expected occurrences of {V t /∈ V} is bounded by ũ
uT with

Assumption 9.3, Definition 5.3 and 5.4. The result follows by
bounding the expected sum of the bounds for the instantaneous
regret using Lemma 6.4.2 with delicate analysis due to the time-
varying clustering structure kept by RCLUMB.

5.5 Experiments

This section compares RCLUMB and RSCLUMBwith CLUB [46],
SCLUB [136], LinUCB with a single estimated vector for all users,
LinUCB-Ind with separate estimated vectors for each user, and
two modifications of LinUCB in [138] which we name as RLin-
UCB and RLinUCB-Ind. We use averaged reward as the eval-
uation metric, where the average is taken over ten independent
trials.

5.5.1 Synthetic Experiments

We consider a setting with u = 1, 000 users, m = 10 clusters
and T = 106 rounds. The preference and feature vectors are
in d = 50 dimension with each entry drawn from a standard
Gaussian distribution, and are normalized to vectors with ‖.‖2 =
1 [136]. We fix an arm set with |A| = 1000 items, at each round
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(a) Synthetic
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(b) Yelp Case 1
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(c) Yelp Case 2
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(d) Movielens Case 1
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(e) Movielens Case 2

Figure 5.1: The figures compare RCLUMB and RSCLUMB with the base-
lines. (a) shows the result on synthetic data, (b) and (c) show the results on
Yelp dataset, (d) and (e) show the results on Movielens dataset. All experi-
ments are under the setting of u = 1, 000 users, m = 10 clusters, and d = 50.
All results are averaged under 10 random trials. The error bars are standard
deviations divided by

√
10.
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t, 20 items are randomly selected to form a set At for the user to
choose from. We construct a matrix ϵ ∈ R1,000×1,000 in which each
element ϵ(i, j) is drawn uniformly from the range (−0.2, 0.2) to
represent the deviation. At t, for user it and the item at, ϵ(it, at)
will be added to the feedback as the deviation, which corresponds
to the ϵit,tat

defined in Eq.(5.1).
The result is provided in Figure 5.1(a), showing that our al-

gorithms have clear advantages: RCLUMB improves over CLUB
by 21.9%, LinUCB by 194.8%, LinUCB-Ind by 20.1%, SCLUB
by 12.0%, RLinUCB by 185.2% and RLinUCB-Ind by 10.6%.
The performance difference between RCLUMB and RSCLUMB is
very small as expected. RLinUCB performs better than LinUCB;
RLinUCB-Ind performs better than LinUCB-Ind and CLUB, show-
ing that the modification of the recommendation policy is effec-
tive. The set-based RSCLUMB and SCLUB can separate clusters
quicker and have advantages in the early period, but eventually
RCLUMB catches up with RSCLUMB, and SCLUB is surpassed
by RLinUCB-Ind because it does not consider misspecifications.
RCLUMB and RSCLUMB perform better than RLinUCB-Ind,
which shows the advantage of the clustering. So it can be con-
cluded that both the modification for misspecification and the
clustering structure are critical to improving the algorithm’s per-
formance. We also have done some ablation experiments on dif-
ferent scales of ϵ∗ in Appendix A.3.16 , and we can notice that
under different ϵ∗ , our algorithms always outperform the base-
lines, and some baselines will perform worse as ϵ∗ increases.
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5.5.2 Experiments on Real-world Datasets

We conduct experiments on the Yelp data and the 20mMovieLens
data [228]. For both data, we have two cases due to the different
methods for generating feedback. For case 1, we extract 1,000
items with most ratings and 1,000 users who rate most; then we
construct a binary matrix H1,000×1,000 based on the user rating
[180, 229]: if the user rating is greater than 3, the feedback is
1; otherwise, the feedback is 0. Then we use this binary matrix
to generate the preference and feature vectors by singular-value
decomposition (SVD) [136, 135, 180]. Similar to the synthetic
experiment, we construct a matrix ϵ ∈ R1,000×1,000 in which each
element is drawn uniformly from the range (−0.2, 0.2). For case
2, we extract 1,100 users who rate most and 1000 items with
most ratings. We construct a binary feedback matrix H1,100×1,000

based on the same rule as case 1. Then we select the first 100 rows
H100×1,000

1 to generate the feature vectors by SVD. The remaining
1,000 rows F 1,000×1,000 is used as the feedback matrix, meaning
user i receives F (i, j) as feedback while choosing item j. In both
cases, at time t, we randomly select 20 items for the algorithms to
choose from. In case 1, the feedback is computed by the preference
and feature vector with misspecification, in case 2, the feedback
is from the feedback matrix.

The results on Yelp are shown in Fig 5.1(b) and Fig 5.1(c). In
case 1, RCLUMB improves CLUB by 45.1%, SCLUB by 53.4%,
LinUCB-One by 170.1% , LinUCB-Ind by 46.2%, RLinUCB by
171.0% and RLinUCB-Ind by 21.5%. In case 2, RCLUMB im-
proves over CLUB by 13.9%, SCLUB by 5.1%, LinUCB-One by
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135.6% , LinUCB-Ind by 10.1%, RLinUCB by 138.6% and RLin-
UCB by 8.5%. It is notable that our modeling assumption 9.1
is violated in case 2 since the misspecification range is unknown.
We set ϵ∗ = 0.2 following our synthetic dataset and it can still
perform better than other algorithms. When the misspecification
level is known as in case 1, our algorithms’ improvement is sig-
nificantly enlarged, e.g., RCLUMB improves over SCLUB from
5.1% to 53.4%.

The results on Movielens are shown in Fig 5.1(d) and 5.1(e). In
case 1, RCLUMB improves CLUB by 58.8%, SCLUB by 92.1%,
LinUCB-One by 107.7%, LinUCB-Ind by 61.5 %, RLinUCB by
109.5%, and RLinUCB-Ind by 21.3%. In case 2, RCLUMB im-
proves over CLUB by 5.5%, SCLUB by 2.9%, LinUCB-One by
28.5%, LinUCB-Ind by 6.1%, RLinUCB by 29.3% and RLinUCB-
Ind by 5.8%. The results are consistent with the Yelp data, con-
firming our superior performance.



Chapter 6

Online Corrupted User
Detection and Regret
Minimization

In real-world online web systems, multiple users usually arrive
sequentially into the system. For applications like click fraud and
fake reviews, some users can maliciously perform corrupted (dis-
rupted) behaviors to trick the system. Therefore, it is crucial to
design efficient online learning algorithms to robustly learn from
potentially corrupted user behaviors and accurately identify the
corrupted users in an online manner. Existing works propose ban-
dit algorithms robust to adversarial corruption. However, these
algorithms are designed for a single user, and cannot leverage the
implicit social relations among multiple users for more efficient
learning. Moreover, none of them consider how to detect cor-
rupted users online in the multiple-user scenario. In this paper,
we present an important online learning problem named LOCUD
to learn and utilize unknown user relations from disrupted be-
haviors to speed up learning, and identify the corrupted users

88
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in an online setting. To robustly learn and utilize the unknown
relations among potentially corrupted users, we propose a novel
bandit algorithm RCLUB-WCU. To detect the corrupted users,
we devise a novel online detection algorithm OCCUD based on
RCLUB-WCU’s inferred user relations. We prove a regret up-
per bound for RCLUB-WCU, which asymptotically matches the
lower bound with respect to T up to logarithmic factors, and
matches the state-of-the-art results in degenerate cases. We also
give a theoretical guarantee for the detection accuracy of OC-
CUD. With extensive experiments, our methods achieve superior
performance over previous bandit algorithms and high corrupted
user detection accuracy. This chapter is based on our publication
[5].

6.1 Introduction

In real-world online recommender systems, data from many users
arrive in a streaming fashion [42, 38, 230, 231, 7, 44, 232]. There
may exist some corrupted (malicious) users, whose behaviors (e.g.,
click, rating) can be adversarially corrupted (disrupted) over time
to fool the system [49, 50, 51, 52, 53]. These corrupted behaviors
could disrupt the user preference estimations of the algorithm. As
a result, the system would easily be misled and make sub-optimal
recommendations [233, 234, 231, 15], which would hurt the user
experience. Therefore, it is essential to design efficient online
learning algorithms to robustly learn from potentially disrupted
behaviors and detect corrupted users in an online manner.

There exist some works on bandits with adversarial corruption
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[49, 53, 54, 142, 51, 45]. However, they have the following limita-
tions. First, existing algorithms are initially designed for robust
online preference learning of a single user. In real-world scenar-
ios with multiple users, they cannot robustly infer and utilize the
implicit user relations for more efficient learning. Second, none
of them consider how to identify corrupted users online in the
multiple-user scenario. Though there also exist some works on
corrupted user detection [55, 56, 57, 235, 236], they all focus on
detection with known user information in an offline setting, thus
can not be applied to do online detection from bandit feedback.

To address these limitations, we propose a novel bandit prob-
lem “Learning and Online Corrupted Users Detection from bandit
feedback” (LOCUD). To model and utilize the relations among
users, we assume there is an unknown clustering structure over
users, where users with similar preferences lie in the same cluster
[46, 135, 237]. The agent can infer the clustering structure to
leverage the information of similar users for better recommenda-
tions. Among these users, there exists a small fraction of cor-
rupted users. They can occasionally perform corrupted behaviors
to fool the agent [51, 49, 50, 53] while mimicking the behav-
iors of normal users most of the time to make themselves hard
to discover. The agent not only needs to learn the unknown user
preferences and relations robustly from potentially disrupted feed-
back, balance the exploration-exploitation trade-off to maximize
the cumulative reward, but also needs to detect the corrupted
users online from bandit feedback.

The LOCUD problem is very challenging. First, the corrupted
behaviors would cause inaccurate user preference estimations,
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which could lead to erroneous user relation inference and sub-
optimal recommendations. Second, it is nontrivial to detect cor-
rupted users online since their behaviors are dynamic over time
(sometimes regular while sometimes corrupted), whereas, in the
offline setting, corrupted users’ information can be fully repre-
sented by static embeddings and the existing approaches [238,
239] can typically do binary classifications offline, which are not
adaptive over time.

We propose a novel learning framework composed of two algo-
rithms to address these challenges.
RCLUB-WCU. To robustly estimate user preferences, learn the
unknown relations from potentially corrupted behaviors, and per-
form high-quality recommendations, we propose a novel bandit
algorithm “Robust CLUstering of Bandits With Corrupted Users”
(RCLUB-WCU), which maintains a dynamic graph over users to
represent the learned clustering structure, where users linked by
edges are inferred to be in the same cluster. RCLUB-WCU adap-
tively deletes edges and recommends arms based on aggregated
interactive information in clusters. We do the following to ensure
robust clustering structure learning. (i) To relieve the estimation
inaccuracy caused by disrupted behaviors, we use weighted ridge
regressions for robust user preference estimations. Specifically,
we use the inverse of the confidence radius to weigh each sam-
ple. If the confidence radius associated with user it and arm at

is large at t, the learner is quite uncertain about the estimation
of it’s preference on at, indicating the sample at t is likely to be
corrupted. Therefore, we use the inverse of the confidence radius
to assign minor importance to the possibly disrupted samples
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when doing estimations. (ii) We design a robust edge deletion
rule to divide the clusters by considering the potential effect of
corruptions, which, together with (i), can ensure that after some
interactions, users in the same connected component of the graph
are in the same underlying cluster with high probability.
OCCUD. To detect corrupted users online, based on the learned
clustering structure of RCLUB-WCU, we devise a novel algo-
rithm named “Online Cluster-based Corrupted User Detection”
(OCCUD). At each round, we compare each user’s non-robustly
estimated preference vector (by ridge regression) and the robust
estimation (by weighted regression) of the user’s inferred cluster.
If the gap exceeds a carefully-designed threshold, we detect this
user as corrupted. The intuitions are as follows. With mislead-
ing behaviors, the non-robust preference estimations of corrupted
users would be far from ground truths. On the other hand, with
the accurate clustering of RCLUB-WCU, the robust estimations
of users’ inferred clusters should be close to ground truths. There-
fore, for corrupted users, their non-robust estimates should be far
from the robust estimates of their inferred clusters.

We summarize our contributions as follows.
•We present a novel online learning problem LOCUD, where the
agent needs to (i) robustly learn and leverage the unknown user
relations to improve online recommendation qualities under the
disruption of corrupted user behaviors; (ii) detect the corrupted
users online from bandit feedback.
•We propose a novel online learning framework composed of two
algorithms, RCLUB-WCU and OCCUD, to tackle the challeng-
ing LOCUD problem. RCLUB-WCU robustly learns and utilizes
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the unknown social relations among potentially corrupted users
to efficiently minimize regret. Based on RCLUB-WCU’s inferred
user relations, OCCUD accurately detects corrupted users online.
•We prove a regret upper bound for RCLUB-WCU, which matches
the lower bound asymptotically in T up to logarithmic factors and
matches the state-of-the-art results in several degenerate cases.
We also give a theoretical performance guarantee for the online
detection algorithm OCCUD.
• Experiments on both synthetic and real-world data clearly show
the advantages of our methods.

6.2 Problem Setup

This section formulates the problem of “Learning and Online
Corrupted Users Detection from bandit feedback”(LOCUD) (il-
lustrated in Fig.6.1). We denote ‖x‖M =

√
x>Mx, [m] =

{1, . . . ,m}, number of elements in set A as |A|.
In LOCUD, there are u users, which we denote by set U =

{1, 2, . . . , u}. Some of them are corrupted users, denoted by set
Ũ ⊆ U . These corrupted users, on the one hand, try to mimic
normal users to make themselves hard to detect; on the other
hand, they can occasionally perform corrupted behaviors to fool
the agent into making sub-optimal decisions. Each user i ∈ U ,
no matter a normal one or corrupted one, is associated with a
(possibly mimicked for corrupted users) preference feature vector
θi ∈ Rd that is unknown and ‖θi‖2 ≤ 1. There is an underlying
clustering structure among all the users representing the similar-
ity of their preferences, but it is unknown to the agent and needs



6.2. PROBLEM SETUP 94

to be learned via interactions. Specifically, the set of users U
can be partitioned into m (m� u) clusters, V1, V2, . . . Vm, where
∪j∈[m]Vj = U , and Vj ∩ Vj′ = ∅, for j 6= j′. Users in the same
cluster have the same preference feature vector, while users in
different clusters have different preference vectors. We use θj to
denote the common preference vector shared by users in the j-th
cluster Vj, and use j(i) to denote the index of cluster user i be-
longs to (i.e., i ∈ Vj(i)). For any two users k, i ∈ U , if k ∈ Vj(i),
then θk = θj(i) = θi; otherwise θk 6= θi. We assume the arm set
A ⊆ Rd is finite. Each arm a ∈ A is associated with a feature
vector xa ∈ Rd with ‖xa‖2 ≤ 1.

The learning process of the agent is as follows. At each round
t ∈ [T ], a user it ∈ U comes to be served, and the learning agent
receives a set of arms At ⊆ A to choose from. The agent infers
the cluster Vt that user it belongs to based on the interaction
history, and recommends an arm at ∈ At according to the aggre-
gated information gathered in the cluster Vt. After receiving the
recommended arm at, a normal user it will give a random reward
with expectation x>atθit to the agent.

To model the behaviors of corrupted users, following [49, 53,
142, 51], we assume that they can occasionally corrupt the re-
wards to mislead the agent into recommending sub-optimal arms.
Specifically, at each round t, if the current served user is a cor-
rupted user (i.e., it ∈ Ũ), the user can corrupt the reward by ct.
In summary, we model the reward received by the agent at round
t as

rt = x>atθit + ηt + ct ,
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where ct = 0 if it is a normal user, (i.e., it /∈ Ũ), and ηt is 1-sub-
Gaussian random noise.
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Figure 6.1: Illustration of LOCUD. The
unknown user relations are represented by
dotted circles, e.g., user 3, 7 have similar
preferences and thus can be in the same
user segment (i.e., cluster). Users 6 and 8
are corrupted users with dynamic behav-
iors over time (e.g., for user 8, the behav-
iors are normal at t1 and t3 (blue), but
are adversarially corrupted at t2 and t4

(red)[49, 51]), making them hard to be de-
tected online. The agent needs to learn
user relations to utilize information among
similar users to speed up learning, and de-
tect corrupted users 6, 8 online from bandit
feedback.

As the number of cor-
rupted users is usually small,
and they only corrupt the
rewards occasionally with
small magnitudes to make
themselves hard to detect,
we assume the sum of cor-
ruption magnitudes in all
rounds is upper bounded by
the corruption level C, i.e.,∑T

t=1 |ct| ≤ C [49, 53, 142,
51].

We assume the clusters,
users, and items satisfy
the following assumptions.
Note that all these assump-
tions basically follow the
settings from classical works
on clustering of bandits [46, 135, 137, 225].

Assumption 6.1 (Gap between different clusters). The gap be-
tween any two preference vectors for different clusters is at least
an unknown positive constant γ∥∥∥θj − θj′

∥∥∥
2
≥ γ > 0 , ∀j, j ′ ∈ [m] , j 6= j′ .

Assumption 6.2 (Uniform arrival of users). At each round t, a
user it comes uniformly at random from U with probability 1/u,
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independent of the past rounds.

Assumption 6.3 (Item regularity). At each round t, the feature
vector xa of each arm a ∈ At is drawn independently from a
fixed unknown distribution ρ over {x ∈ Rd : ‖x‖2 ≤ 1}, where
Ex∼ρ[xx

>]’s minimal eigenvalue λx > 0. At ∀t, for any fixed unit
vector z ∈ Rd, (θ>z)2 has sub-Gaussian tail with variance no
greater than σ2.

Let a∗t ∈ argmaxa∈At
x>a θit denote an optimal arm with the

highest expected reward at round t. One objective of the learning
agent is to minimize the expected cumulative regret

R(T ) = E[
∑T

t=1(x
>
a∗t
θit − x>atθit)] . (6.1)

Another objective is to detect corrupted users online accurately.
Specifically, at round t, the agent will give a set of users Ũt as the
detected corrupted users, and we want Ũt to be as close to the
ground-truth set of corrupted users Ũ as possible.

6.3 Algorithms

This section introduces our algorithms RCLUB-WCU (Algo.8)
and OCCUD (Algo.9). RCLUB-WCU robustly learns the un-
known user clustering structure and preferences from corrupted
feedback, and leverages the cluster-based information to accel-
erate learning. Based on the clustering structure learned by
RCLUB-WCU, OCCUD can accurately detect corrupted users
online.
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Algorithm 8 RCLUB-WCU
1: Input: Regularization parameter λ, confidence radius parameter

β, threshold parameter α, edge deletion parameter α1, f(T ) =√
(1 + ln(1 + T ))/(1 + T ).

2: Initialization: M i,0 = 0d×d, bi,0 = 0d×1, M̃ i,0 = 0d×d, b̃i,0 = 0d×1, Ti,0 =

0 , ∀i ∈ U ;
A complete graph G0 = (U , E0) over U .

3: for all t = 1, 2, . . . , T do
4: Receive the index of the current served user it ∈ U , get the feasible arm

set at this round At.
5: Determine the connected components Vt in the current maintained graph

Gt−1 = (U , Et−1) such that it ∈ Vt.
6: Calculate the robustly estimated statistics for the cluster Vt:

MVt,t−1 = λI +
∑

i∈Vt
Mi,t−1 , bVt,t−1 =

∑
i∈Vt

bi,t−1 , θ̂Vt,t−1 =

M−1
Vt,t−1bVt,t−1 ;

7: Select an arm at with largest UCB index in Eq.(6.3) and receive the
corresponding reward rt;

8: Update the statistics for robust estimation of user it:
Mit,t = Mit,t−1 + wit,t−1xatx

⊤
at , bit,t = bit,t−1 + wit,t−1rtxat , Tit,t =

Tit,t−1 + 1 ,

M ′
it,t = λI +Mit,t, θ̂it,t = M ′−1

it,t
bit,t , wit,t = min{1, α/‖xat‖M ′−1

it,t
} ;

9: Keep robust estimation statistics of other users unchanged:
Mℓ,t = Mℓ,t−1, bℓ,t = bℓ,t−1, Tℓ,t = Tℓ,t−1 , θ̂ℓ,t = θ̂ℓ,t−1, for all ℓ ∈ U , ℓ 6=
it;

10: Delete the edge (it, ℓ) ∈ Et−1, if∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥
2
≥ α1

(
f(Tit,t) + f(Tℓ,t) + αC

)
,

and get an updated graph Gt = (U , Et);
11: Use the OCCUD Algorithm (Algo.9) to detect the corrupted users.
12: end for

6.3.1 RCLUB-WCU

The corrupted behaviors may cause inaccurate preference esti-
mations, leading to erroneous relation inference and sub-optimal
decisions. In this case, how to learn and utilize unknown user
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relations to accelerate learning becomes non-trivial. Motivated
by this, we design RCLUB-WCU as follows.
Assign the inferred cluster Vt for user it. RCLUB-WCU
maintains a dynamic undirected graph Gt = (U , Et) over users,
which is initialized to be a complete graph (Algo.8 Line 2). Users
with similar learned preferences will be connected with edges in
Et. The connected components in the graph represent the inferred
clusters by the algorithm. At round t, user it comes to be served
with a feasible arm set At for the agent to choose from (Line 4).
In Line 5, RCLUB-WCU detects the connected component Vt in
the graph containing user it to be the current inferred cluster for
it.
Robust preference estimation of cluster Vt. After determin-
ing the cluster Vt, RCLUB-WCU estimates the common prefer-
ences for users in Vt using the historical feedback of all users in
Vt and recommends an arm accordingly. The corrupted behav-
iors could cause inaccurate preference estimates, which can easily
mislead the agent. To address this, inspired by [240, 51], we use
weighted ridge regression to make corruption-robust estimations.
Specifically, RCLUB-WCU robustly estimates the common pref-
erence vector of cluster Vt by solving the following weighted ridge
regression

θ̂Vt,t−1 = argmin
θ∈Rd

∑
s∈[t−1]
is∈Vt

wis,s(rs − x>asθ)
2 + λ ‖θ‖22 , (6.2)

where λ > 0 is a regularization coefficient. Its closed-form solu-
tion is θ̂Vt,t−1 = M−1

Vt,t−1bVt,t−1 , whereMVt,t−1 = λI+
∑

s∈[t−1]
is∈Vt

wis,sxasx
>
as
,

bVt,t−1 =
∑

s∈[t−1]
is∈Vt

wis,srasxas.

We set the weight of sample for user is in Vt at round s as
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wis,s = min{1, α/ ‖xas‖M ′−1
is,s
}, where α is a coefficient to be de-

termined later. The intuitions of designing these weights are as
follows. The term ‖xas‖M ′−1

is,s
is the confidence radius of arm as

for user is at s, reflecting how confident the algorithm is about
the estimation of is’s preference on as at s. If ‖xas‖M ′−1

is,s
is large,

it means the agent is uncertain of user is’s preference on as, in-
dicating this sample is probably corrupted. Therefore, we use
the inverse of confidence radius to assign a small weight to this
round’s sample if it is potentially corrupted. In this way, uncer-
tain information for users in cluster Vt is assigned with less im-
portance when estimating the Vt’s preference vector, which could
help relieve the estimation inaccuracy caused by corruption. For
technical details, please refer to Section 6.4.1 and Appendix.
Recommend at with estimated preference of cluster Vt.
Based on the corruption-robust preference estimation θ̂Vt,t−1 of
cluster Vt, in Line 7, the agent recommends an arm using the
upper confidence bound (UCB) strategy to balance exploration
and exploitation

at = argmax
a∈At

x>a θ̂Vt,t−1 + β ‖xa‖M−1
Vt,t−1

≜ R̂a,t + Ca,t , (6.3)

where β =
√
λ+

√
2 log(1δ ) + d log(1 + T

λd)+αC is the confidence
radius parameter, R̂a,t denotes the estimated reward of arm a at
t, Ca,t denotes the confidence radius of arm a at t. The design
of Ca,t theoretically relies on Lemma 6.4.2 that will be given in
Section 6.4.
Update the robust estimation of user it. After receiving rt,
the algorithm updates the estimation statistics of user it, while
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keeping the statistics of others unchanged (Line 8 and Line 9).
Specifically, RCLUB-WCU estimates the preference vector of user
it by solving a weighted ridge regression

θ̂it,t = argmin
θ∈Rd

∑
s∈[t]
is=it

wis,s(rs − x>asθ)
2 + λ ‖θ‖22 (6.4)

with closed-form solution θ̂it,t = (λI +Mit,t)
−1bit,t , whereMit,t =∑

s∈[t]
is=it

wis,sxasx
>
as
, bit,t =

∑
s∈[t]
is=it

wis,srasxas , and we design the
weights in the same way by the same reasoning. Update the

Algorithm 9 OCCUD (At round t, used in Line 11 in Algo.8)
1: Initialize Ũt = ∅; input probability parameter δ.
2: Update the statistics for non-robust estimation of user it

M̃it,t = M̃it,t−1 + xatx
⊤
at , b̃it,t = b̃it,t−1 + rtxat , θ̃it,t = (λI + M̃it,t)

−1b̃it,t ,
3: Keep non-robust estimation statistics of other users unchanged

M̃ℓ,t = M̃ℓ,t−1, b̃ℓ,t = b̃ℓ,t−1, θ̃ℓ,t = θ̃ℓ,t−1, for all ℓ ∈ U , ℓ 6= it .
4: for all connected component Vj,t ∈ Gt do
5: Calculate the robust estimation statistics for the cluster Vj,t:

MVj,t,t = λI +
∑

ℓ∈Vj,t
Mℓ,t , TVj,t,t =

∑
ℓ∈Vj,t

Tℓ,t ,

bVj,t,t =
∑

ℓ∈Vj,t
bℓ,t , θ̂Vj,t,t = M−1

Vj,t,t
bVj,t,t ;

6: for all user i ∈ Vj,t do
7: Detect user i to be a corrupted user and add user i to the set Ũt if

the following holds:

∥∥∥θ̃i,t − θ̂Vi,t,t

∥∥∥
2
>

√
d log(1 + Ti,t

λd
) + 2 log(1

δ
)
√
λ√

λmin(M̃i,t) + λ

+

√
d log(1 + TVi,t,t

λd
) + 2 log(1

δ
) +
√
λ+ αC√

λmin(MVi,t,t)
, (6.5)

where λmin(·) denotes the minimum eigenvalue of the matrix argu-
ment.

8: end for
9: end for
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dynamic graph. Finally, with the updated statistics of user
it, RCLUB-WCU checks whether the inferred it’s preference sim-
ilarities with other users are still true, and updates the graph
accordingly. Precisely, if gap between the updated estimation
θ̂it,t of it and the estimation θ̂ℓ,t of user ℓ exceeds a threshold in
Line 10, RCLUB-WCU will delete the edge (it, ℓ) in Gt−1 to split
them apart. The threshold is carefully designed to handle the
estimation uncertainty from both stochastic noises and potential
corruptions. The updated graph Gt = (U , Et) will be used in the
next round.

6.3.2 OCCUD

Based on the inferred clustering structure of RCLUB-WCU, we
devise a novel online detection algorithm OCCUD (Algo.9). The
design ideas and process of OCCUD are as follows.

Besides the robust preference estimations (with weighted re-
gression) of users and clusters kept by RCLUB-WCU, OCCUD
also maintains the non-robust estimations for each user by online
ridge regression without weights (Line 2 and Line 3). Specifically,
at round t, OCCUD updates the non-robust estimation of user it
by solving the following online ridge regression:

θ̃it,t = argmin
θ∈Rd

∑
s∈[t]
is=it

(rs − x>asθ)
2 + λ ‖θ‖22 , (6.6)

with solution θ̃it,t = (λI + M̃it,t)
−1

b̃it,t , where M̃it,t =
∑

s∈[t]
is=it

xasx
⊤
as , b̃it,t =∑

s∈[t]
is=it

rasxas .

With the robust and non-robust preference estimations, OC-
CUD does the following to detect corrupted users based on the



6.3. ALGORITHMS 102

clustering structure inferred by RCLUB-WCU. First, OCCUD
finds the connected components in the graph kept by RCLUB-
WCU, which represent the inferred clusters. Then, for each in-
ferred cluster Vj,t ∈ Gt: (1) OCCUD computes its robustly esti-
mated preferences vector θ̂Vi,t,t (Line 5). (2) For each user i whose
inferred cluster is Vj,t (i.e.,i ∈ Vj,t), OCCUD computes the gap
between user i’s non-robustly estimated preference vector θ̃i,t and
the robust estimation θ̂Vi,t,t for user i’s inferred cluster Vj,t. If the
gap exceeds a carefully-designed threshold, OCCUD will detect
user i as corrupted and add i to the detected corrupted user set
Ũt (Line 7).
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Figure 6.2: Algorithm illustrations. Users 6 and 8 are corrupted users (or-
ange), and the others are normal (green). (a) illustrates RCLUB-WCU, which
starts with a complete user graph, and adaptively deletes edges between users
(dashed lines) with dissimilar robustly learned preferences. The corrupted be-
haviors of users 6 and 8 may cause inaccurate preference estimations, leading to
erroneous relation inference. In this case, how to delete edges correctly is non-
trivial, and RCLUB-WCU addresses this challenge (detailed in Section 6.3.1).
(b) illustrates OCCUD at some round t, where person icons with triangle hats
represent the non-robust user preference estimations. The gap between the
non-robust estimation of user 6 and the robust estimation of user 6’s inferred
cluster (circle C1) exceeds the threshold r6 at this round (Line 7 in Algo.9), so
OCCUD detects user 6 to be corrupted.

The intuitions of OCCUD are as follows. On the one hand,
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after some interactions, RCLUB-WCU will infer the user cluster-
ing structure accurately. Thus, at round t, the robust estimation
θ̂Vi,t,t for user i’s inferred cluster should be pretty close to user i’s
ground-truth preference vector θi. On the other hand, since the
feedback of normal users are always regular, at round t, if user
i is a normal user, the non-robust estimation θ̃i,t should also be
close to the ground-truth θi. However, the non-robust estimation
of a corrupted user should be quite far from the ground truth
due to corruptions. Based on this reasoning, OCCUD compares
each user’s non-robust estimation and the robust estimation of
the user’s inferred cluster to detect the corrupted users. For tech-
nical details, please refer to Section 6.4.2 and Appendix. Simple
illustrations of our proposed algorithms can be found in Fig.6.2.

6.4 Theoretical Analysis

In this section, we theoretically analyze the performances of our
proposed algorithms, RCLUB-WCU and OCCUD. Due to the
page limit, we put the proofs in the Appendix.

6.4.1 Regret Analysis of RCLUB-WCU

This section gives an upper bound of the expected regret (defined
in Eq.(6.1)) for RCLUB-WCU.

The following lemma provides a sufficient time T0(δ), after
which RCLUB-WCU can cluster all the users correctly with high
probability.
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Lemma 6.4.1. With probability at least 1 − 3δ, RCLUB-WCU
will cluster all the users correctly after

T0(δ) ≜ 16u log(u
δ
) + 4umax{ 288d

γ2α
√
λλ̃x

log(u
δ
),
16

λ̃2
x

log( 8d

λ̃2
xδ

),
72
√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

}

for some δ ∈ (0, 13), where λ̃x ≜
∫ λx

0 (1 − e−
(λx−x)2

2σ2 )Kdx, |At| ≤
K, ∀t ∈ [T ].

After T0(δ), the following lemma gives a bound of the gap be-
tween θ̂Vt,t−1 and the ground-truth θit in direction of action vector
xa for RCLUB-WCU, which supports the design in Eq.(6.3).

Lemma 6.4.2. With probability at least 1−4δ for some δ ∈ (0, 14),
∀t ≥ T0(δ), we have:∣∣∣xT

a (θ̂Vt,t−1 − θit)
∣∣∣ ≤ β ‖xa‖M−1

Vt,t−1
≜ Ca,t .

With Lemma A.3.2 and 6.4.2, we prove the following theorem
on the regret upper bound of RCLUB-WCU.

Theorem 6.4.3 (Regret Upper Bound of RCLUB-WCU).
With the assumptions in Section 6.2, and picking α =

√
d+
√
λ

C ,
the expected regret of the RCLUB-WCU algorithm for T rounds
satisfies

R(T ) ≤ O
(
(
C
√
d

γ2λ̃x

+
1

λ̃2
x

)u log(T )
)
+O

(
d
√
mT log(T )

)
+O

(
mCd log1.5(T )

)
. (6.7)

Discussion and Comparison. The regret bound in Eq.(6.7)
has three terms. The first term is the time needed to get enough
information for accurate robust estimations such that RCLUB-
WCU could cluster all users correctly afterward with high prob-
ability. This term is related to the corruption level C, which is
inevitable since, if there are more corrupted user feedback, it will
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be harder for the algorithm to learn the clustering structure cor-
rectly. The last two terms correspond to the regret after T0 with
the correct clustering. Specifically, the second term is caused
by stochastic noises when leveraging the aggregated information
within clusters to make recommendations; the third term asso-
ciated with the corruption level C is the regret caused by the
disruption of corrupted behaviors.

When the corruption level C is unknown, we can use its esti-
mated upper bound Ĉ ≜

√
T to replace C in the algorithm. In

this way, if C ≤ Ĉ, the bound will be replacing C with Ĉ in
Eq.(6.7); when C >

√
T , R(T ) = O(T ), which is already optimal

for a large class of bandit algorithms [51].
The following theorem gives a regret lower bound of the LOCUD

problem.

Theorem 6.4.4 (Regret lower bound for LOCUD). There exists
a problem instance for the LOCUD problem such that for any
algorithm

R(T ) ≥ Ω(d
√
mT + dC) .

Its proof and discussions can be found in Appendix A.4.4. The
upper bound in Theorem 6.4.3 asymptotically matches this lower
bound in T up to logarithmic factors, showing our regret bound
is nearly optimal.

We then compare our regret upper bound with several de-
generated cases. First, when C = 0, i.e., all users are normal,
our setting degenerates to the classic CB problem [46]. In this
case the bound in Theorem 6.4.3 becomes O(1/λ̃2

x · u log(T )) +
O(d
√
mT log(T )), perfectly matching the state-of-the-art results
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in CB [46, 135, 237]. Second, when m = 1 and u = 1, i.e.,
there is only one user, our setting degenerates to linear bandits
with adversarial corruptions [54, 51], and the bound in Theorem
6.4.3 becomes O(d

√
T log(T )) +O(Cd log1.5(T )), it also perfectly

matches the nearly optimal result in [51]. The above comparisons
also show the tightness of the regret bound of RCLUB-WCU.

6.4.2 Theoretical Performance Guarantee for OCCUD

The following theorem gives a performance guarantee of the online
detection algorithm OCCUD.

Theorem 6.4.5 (Theoretical Guarantee for OCCUD). With
assumptions in Section 6.2, at ∀t ≥ T0(δ), for any detected cor-
rupted user i ∈ Ũt, with probability at least 1 − 5δ, i is indeed a
corrupted user.

This theorem guarantees that after RCLUB-WCU learns the
clustering structure accurately, with high probability, the cor-
rupted users detected by OCCUD are indeed corrupted, showing
the high detection accuracy of OCCUD. The proof of Theorem
6.4.5 can be found in Appendix A.4.4.

6.5 Experiments

This section shows experimental results on synthetic and real data
to evaluate RCLUB-WCU’s recommendation quality and OC-
CUD’s detection accuracy. We compare RCLUB-WCU to Lin-
UCB [43] with a single non-robust estimated vector for all users,
LinUCB-Ind with separate non-robust estimated vectors for each
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user, CW-OFUL [51] with a single robust estimated vector for
all users, CW-OFUL-Ind with separate robust estimated vectors
for each user, CLUB[46], and SCLUB[237]. More description of
these baselines are in Appendix A.4.6. To show that the design
of OCCUD is non-trivial, we develop a straightforward detection
algorithm GCUD, which leverages the same cluster structure as
OCCUD but detects corrupted users by selecting users with high-
est

∥∥∥θ̂i,t − θ̂Vi,t,t−1

∥∥∥
2

in each inferred cluster. GCUD selects users
according to the underlying percentage of corrupted users, which
is unrealistic in practice, but OCCUD still performs better in this
unfair condition.
Remark. The offline detection methods [57, 56, 238, 239] need
to know all the user information in advance to derive the user
embedding for classification, so they cannot be directly applied
in online detection with bandit feedback thus cannot be directly
compared to OCCUD. However, we observe the AUC achieved
by OCCUD on Amazon and Yelp (in Tab.6.1) is similar to recent
offline methods [238, 239]. Additionally, OCCUD has rigorous
theoretical performance guarantee (Section 6.4.2).

6.5.1 Experiments on Synthetic Dataset

We use u = 1, 000 users and m = 10 clusters, where each cluster
contains 100 users. We randomly select 100 users as the corrupted
users. The preference and arm (item) vectors are drawn in d− 1

(d = 50) dimensions with each entry a standard Gaussian variable
and then normalized, added one more dimension with constant 1,
and divided by

√
2 [237]. We fix an arm set with |A| = 1000 items,
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at each round, 20 items are randomly selected to form a set At to
choose from. Following [240, 241], in the first k rounds, we always
flip the reward of corrupted users by setting rt = −xT

at
θit,t + ηt.

And we leave the remaining T − k rounds intact. Here we set
T = 1, 000, 000 and k = 20, 000.
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Figure 6.3: Recommendation results on the synthetic and real-world datasets

Fig.6.3(a) shows the recommendation results. RCLUB-WCU
outperforms all baselines and achieves a sub-linear regret. Lin-
UCB and CW-OFUL perform worst as they ignore the preference
differences among users. CW-OFUL-Ind outperforms LinUCB-
Ind because it considers the corruption, but worse than RCLUB-
WCU since it does not consider leveraging user relations to speed
up learning.

The detection results are shown in Tab.6.1. We test the AUC
of OCCUD and GCUD in every 200, 000 rounds. OCCUD’s
performance improves over time with more interactions, while
GCUD’s performance is much worse as it detects corrupted users
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only relying on the robust estimations. OCCUD finally achieves
an AUC of 0.855, indicating it can identify most of the corrupted
users.

6.5.2 Experiments on Real-world Datasets

We use three real-world data Movielens [228], Amazon[242], and
Yelp [243]. The Movielens data does not have the corrupted users’
labels, so following [244], we manually select the corrupted users.
On Amazon data, following [57], we label the users with more
than 80% helpful votes as normal users, and label users with less
than 20% helpful votes as corrupted users. The Yelp data contains
users and their comments on restaurants with true labels of the
normal users and corrupted users.

We select 1,000 users and 1,000 items for Movielens; 1,400
users and 800 items for Amazon; 2,000 users and 2,000 items for
Yelp. The ratios of corrupted users on these data are 10%, 3.5%,
and 30.9%, respectively. We generate the preference and item
vectors following [180, 237]. We first construct the binary feed-
back matrix through the users’ ratings: if the rating is greater
than 3, the feedback is 1; otherwise, the feedback is 0. Then
we use SVD to decompose the extracted binary feedback matrix
Ru×m = θSXT, where θ = (θi), i ∈ [u] and X = (xj), j ∈ [m],
and select d = 50 dimensions. We have 10 clusters on Movie-
lens and Amazon, and 20 clusters on Yelp. We use the same
corruption mechanism as the synthetic data with T = 1, 000, 000

and k = 20, 000. We conduct more experiments in different envi-
ronments to show our algorithms’ robustness in Appendix.A.4.7.
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Dataset
Alg

Time0.2M 0.4M 0.6M 0.8M 1M

Synthetic
OCCUD 0.599 0.651 0.777 0.812 0.855
GCUD 0.477 0.478 0.483 0.484 0.502

Movielens
OCCUD 0.65 0.750 0.785 0.83 0.85
GCUD 0.450 0.474 0.485 0.489 0.492

Amazon
OCCUD 0.639 0.735 0.761 0.802 0.840
GCUD 0.480 0.480 0.486 0.500 0.518

Yelp
OCCUD 0.452 0.489 0.502 0.578 0.628
GCUD 0.473 0.481 0.496 0.500 0.510

Table 6.1: Detection results on synthetic
and real datasets

The recommendation re-
sults are shown in Fig.6.3(b)-
(d). RCLUB-WCU out-
performs all baselines. On
the Amazon dataset, the
percentage of corrupted
users is lowest, RCLUB-
WCU’s advantages over
baselines decrease because
of the weakened corruption. The corrupted user detection results
are provided in Tab.6.1. OCCUD’s performance improves over
time and is much better than GCUD. On the Movielens dataset,
OCCUD achieves an AUC of 0.85; on the Amazon dataset, OC-
CUD achieves an AUC of 0.84; and on the Yelp dataset, OCCUD
achieves an AUC of 0.628. According to recent works on offline
settings [238, 239], our results are relatively high.



Chapter 7

Efficient Explorative Key-term
Selection Strategies for
Conversational Contextual
Bandits

Conversational contextual bandits elicit user preferences by oc-
casionally querying for explicit feedback on key-terms to acceler-
ate learning. However, there are aspects of existing approaches
which limit their performance. First, information gained from
key-term-level conversations and arm-level recommendations is
not appropriately incorporated to speed up learning. Second, it
is important to ask explorative key-terms to quickly elicit the
user’s potential interests in various domains to accelerate the
convergence of user preference estimation, which has never been
considered in existing works. To tackle these issues, we first pro-
pose “ConLinUCB”, a general framework for conversational ban-
dits with better information incorporation, combining arm-level
and key-term-level feedback to estimate user preference in one

111
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step at each time. Based on this framework, we further design
two bandit algorithms with explorative key-term selection strate-
gies, ConLinUCB-BS and ConLinUCB-MCR. We prove tighter
regret upper bounds of our proposed algorithms. Particularly,
ConLinUCB-BS achieves a regret bound of O(d

√
T logT ), better

than the previous result O(d
√
T logT ). Extensive experiments on

synthetic and real-world data show significant advantages of our
algorithms in learning accuracy (up to 54% improvement) and
computational efficiency (up to 72% improvement), compared to
the classic ConUCB algorithm, showing the potential benefit to
recommender systems. This chapter is based on our publication
[7].

7.1 Introduction

Nowadays, recommender systems are widely used in various areas.
The learning speed for traditional online recommender systems is
usually slow since extensive exploration is needed to discover user
preferences. To accelerate the learning process and provide more
personalized recommendations, the conversational recommender
system (CRS) has been proposed [61, 245, 246, 247, 248, 249]. In
a CRS, a learning agent occasionally asks for the user’s explicit
feedback on some “key-terms”, and leverages this additional con-
versational information to better elicit the user’s preferences [62,
181].

Despite the recent success of CRS, there are crucial limita-
tions in using conversational contextual bandit approaches to de-
sign recommender systems. These limitations include: (a) The
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information gained from key-term-level conversations and arm-
level recommendations is not incorporated properly to speed up
learning, as the user preferences are essentially assumed to be the
same in these two stages but are estimated separately [62, 181,
180]; (b) Queries using traditional key-terms were restrictive and
not explorative enough. Specifically, we say a key-term is “explo-
rative” if it is under-explored so far and the system is uncertain
about the user’s preferences in its associated items. Asking for
the user’s feedback on explorative key-terms can efficiently elicit
her potential interests in various domains (e.g., sports, science),
which means we can quickly estimate the user preference vector
in all directions of the feature space, thus accelerating the learn-
ing speed. Therefore, it is crucial to design explorative key-term
selection strategies, which existing works have not considered.

Motivated by the above considerations, we propose to design
conversational bandit algorithms that (i) estimate the user’s pref-
erences utilizing both arm-level and key-term-level interactions
simultaneously to properly incorporate the information gained
from both two levels and (ii) use effective strategies to choose ex-
plorative key-terms when conducting conversations for quick user
preference inference.

To better utilize the interactive feedback from both recom-
mendations and conversations, we propose ConLinUCB, a general
framework for conversational bandits with possible flexible key-
term selection strategies. ConLinUCB estimates the user prefer-
ence vector by solving one single optimization problem that mini-
mizes the mean squared error of both arm-level estimated rewards
and key-term-level estimated feedback simultaneously, instead of
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separately estimating at different levels as in previous works. In
this manner, the information gathered from these two levels can
be better combined to guide the learning.

Based on this ConLinUCB framework, we design two new algo-
rithms with explorative key-term selection strategies, ConLinUCB-
BS and ConLinUCB-MCR.

• ConLinUCB-BS makes use of a barycentric spanner contain-
ing linearly independent vectors, which can be an efficient
exploration basis in bandit problems [250]. Whenever a con-
versation is allowed, ConLinUCB-BS selects an explorative
key-term uniformly at random from a precomputed barycen-
tric spanner B of the given key-term set K.

• ConLinUCB-MCR applies in a more general setting when
the key-term set can be time-varying, and it can leverage
interactive histories to choose explorative key-terms adap-
tively. Note that in the bandit setting, we often use con-
fidence radius to adaptively evaluate whether an arm has
been sufficiently explored, and the confidence radius of an
arm will shrink whenever it is selected [139]. This implies
that an explorative key-term should have a large confidence
radius. Based on this reasoning, ConLinUCB-MCR selects
the most explorative key-terms with maximal confidence ra-
dius when conducting conversations.

Equipped with explorative conversations, our algorithms can
quickly elicit user preferences for better recommendations. For
example, if the key-term sports is explorative at round t, indi-
cating that so far the agent is not sure whether the user favors
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items associated with sports (e.g., basketball, volleyball), it will
ask for the user’s feedback on sports directly and conduct recom-
mendations accordingly. In this manner, the agent can quickly
find suitable items for the user. We prove the regret upper bounds
of our algorithms, which are better than the classic ConUCB al-
gorithm.

In summary, our paper makes the following contributions:

• We propose a new and general framework for conversational
contextual bandits, ConLinUCB, which can efficiently incor-
porate the interactive information gained from both recom-
mendations and conversations.

• Based on ConLinUCB, we design two new algorithms with
explorative key-term selection strategies, ConLinUCB-BS and
ConUCB-MCR, which can accelerate the convergence of user
preference estimation.

• We prove that our algorithms achieve tight regret upper
bounds. Particularly, ConLinUCB-BS achieves a bound of
O(d
√
T logT ), better than the previous O(d

√
T logT ) in the

conversational bandits literature.

• Experiments on both synthetic and real-world data validate
the advantages of our algorithms in both learning accuracy
(up to 54% improvement) and computational efficiency (up
to 72% improvement)1.

1Codes are available at https://github.com/ZhiyongWangWzy/ConLinUCB.

https://github.com/ZhiyongWangWzy/ConLinUCB.
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7.2 Problem Settings

This section states the problem setting of conversational contex-
tual bandits. Suppose there is a finite set A of arms. Each arm
a ∈ A represents an item to be recommended and is associated
with a feature vector xa ∈ Rd. Without loss of generality, the
feature vectors are assumed to be normalized, i.e., ‖xa‖2 = 1,
∀a ∈ A. The agent interacts with a user in T ∈ N+ rounds,
whose preference of items is represented by an unknown vector
θ∗ ∈ Rd, ‖θ∗‖2 ≤ 1.

At each round t = 1, 2, ..., T , a subset of armsAt ⊆ A are avail-
able to the agent to choose from. Based on historical interactions,
the agent selects an arm at ∈ At, and receives a corresponding
reward rat,t ∈ [0, 1]. The reward is assumed to be a linear function
of the contextual vectors

rat,t = x>atθ
∗ + ϵt , (7.1)

where ϵt is 1-sub-Gaussian random noise with zero mean.
Let a∗t ∈ argmaxa∈At

x>a θ
∗ denote an optimal arm with the

largest expected reward at t. The learning objective is to mini-
mize the cumulative regret

R(T ) =
T∑
t=1

x>a∗tθ
∗ −

T∑
t=1

x>atθ
∗. (7.2)

The agent can also occasionally query the user’s feedback on
some conversational key-terms to help elicit user preferences. In
particular, a “key-term” is a keyword or topic related to a subset
of arms. For example, the key-term sports is related to the arms
like basketball, football, swimming, etc.
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Suppose there is a finite set K of key-terms. The relation-
ship between arms and key-terms is given by a weighted bipartite
graph (A,K,W ), where W ≜ [wa,k]a∈A,k∈K represents the rela-
tionship between arms and key-terms, i.e., a key-term k ∈ K is
associated to an arm a ∈ A with weight wa,k ≥ 0. We assume
that each key-term k has positive weights with some related arms
(i.e.,

∑
a∈Awa,k > 0, ∀k ∈ K), and the weights associated with

each arm sum up to 1, i.e.,
∑

k∈K wa,k = 1, a ∈ A. The feature
vector of a key-term k is given by x̃k =

∑
a∈A

wa,k∑
a′∈A wa′,k

xa. The
key-term-level feedback on the key-term k at t is defined as

r̃k,t = x̃>k θ
∗ + ϵ̃t , (7.3)

where ϵ̃t is assumed to be 1-sub-Gaussian random noise. One
thing to stress is that in the previous works [62, 180, 181, 182],
the unknown user preference vector θ∗ is essentially assumed to
be the same at both the arm level and the key-term level.

To avoid affecting the user experience, the agent should not
conduct conversations too frequently. Following [62], we define a
function b : N+ → R+, where b(t) is increasing in t, to control the
conversation frequency of the agent. At each round t, if b(t) −
b(t − 1) > 0, the agent is allowed to conduct q(t) = bb(t) −
b(t− 1)c conversations by asking for user’s feedback on q(t) key-
terms. Using this modeling arrangement, the agent will have b(t)
conversational interactions with the user up to round t.
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7.3 Algorithms and Theoretical Analysis

This section first introduces ConLinUCB, a framework for con-
versational bandits with better information incorporation, which
is general for “any” key-term selection strategies. Based on Con-
LinUCB, we further propose two bandit algorithms, ConLinUCB-
BS and ConLinUCB-MCR, with explorative key-term selection
strategies.

To simplify the exposition, we merge the ConLinUCB frame-
work, ConLinUCB-BS and ConLinUCB-MCR in Algorithm 10.
We also theoretically give regret bounds of our proposed algo-
rithms.

7.3.1 General ConLinUCB Algorithm Framework

In conversational bandits, it is common that the unknown pref-
erence vector θ∗ is essentially assumed to be the same at both
arm level and key-term level [62, 181, 180]. However, all existing
works treat θ∗ differently at these two levels. Specifically, they
take two different steps to estimate user preference vectors at the
arm level and key-term level, and use a discounting parameter
λ ∈ (0, 1) to balance learning from these two levels’ interactions.
In this manner, the contributions of the arm-level and key-term-
level information to the convergence of estimation are discounted
by λ and 1 − λ, respectively. Therefore, such discounting will
cause waste of observations, indicating that information at these
two levels can not be fully leveraged to accelerate the learning
process.

To handle the above issues, we propose a general framework
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called ConLinUCB, for conversational contextual bandits. In this
new framework, in order to fully leverage interactive information
from two levels, we simultaneously estimate the user preference
vector by solving one single optimization problem that minimizes
the mean squared error of both arm-level estimated rewards and
key-term-level estimated feedback. Specifically, in ConLinUCB,
at round t, the user preference vector is estimated by solving the
following linear regression

θt = argmin
θ∈Rd

t−1∑
τ=1

(x>aτθ − raτ ,τ)
2 +

t∑
τ=1

∑
k∈Kτ

(x̃>k θ − r̃k,τ )
2

+ β ‖θ‖22 , (7.4)

where Kτ denotes the set of key-terms asked at round τ , and the
coefficient β > 0 controls regularization. The closed-form solution
of this optimization problem is

θt = M−1
t bt , (7.5)

where

Mt =
t−1∑
τ=1

xaτx
>
aτ
+

t∑
τ=1

∑
k∈Kτ

x̃kx̃
>
k + βI ,

bt =
t−1∑
τ=1

xaτraτ ,τ +
t∑

τ=1

∑
k∈Kτ

x̃kr̃k,τ .

(7.6)

To balance exploration and exploitation, ConLinUCB selects
arms using the upper confidence bound (UCB) strategy

at = argmax
a∈At

x>a θt︸ ︷︷ ︸
R̂a,t

+αt ‖xa‖M−1
t︸ ︷︷ ︸

Ca,t

, (7.7)
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where ‖x‖M =
√
x>Mx, R̂a,t and Ca,t denote the estimated

reward and confidence radius of arm a at round t, and

αt =

√
2 log(1

δ
) + d log(1 + t+ b(t)

βd
) +

√
β , (7.8)

which comes from the following Lemma 7.3.1.
The ConLinUCB algorithm framework is shown in Alg. 10.

The key-term-level interactions take place in line 3-14. At round
t, the agent first determines whether conversations are allowed us-
ing b(t). When conducting conversations, the agent asks for the
user’s feedback on q(t) key-terms and uses the feedback to update
the parameters. Line 15-20 summarise the arm-level interactions.
Based on historical interactions, the agent calculates the esti-
mated θ∗, selects an arm with the largest UCB index, receives
the corresponding reward, and updates the parameters accord-
ingly. ConLinUCB only maintains one set of covariance matrix
Mt and regressand vector bt, containing the feedback from both
arm-level and key-term-level interactions. By doing so, ConLin-
UCB better leverages the feedback information than ConUCB.
Note that ConLinUCB is a general framework with the specified
key-term selection strategy π to be determined.

7.3.2 ConLinUCB with key-terms from Barycentric Span-
ner (ConLinUCB-BS)

Based on the ConLinUCB framework, we propose the ConLinUCB-
BS algorithm with an explorative key-term selection strategy.
Specifically, ConLinUCB-BS selects key-terms from the barycen-
tric spanner B of the key-term set K, which is an efficient ex-
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ploration basis in online learning [250], to conduct explorative
conversations. Below is the formal definition of the barycentric
spanner for the key-term set K.

Definition 7.1 (Barycentric Spanner ofK). B = {k1, k2, ..., kd} ⊆
K is a barycentric spanner for K if for any k ∈ K, there exists a
set of coefficients c ∈ [−1, 1]d, such that x̃k =

∑d
i=1 cix̃ki.

We assume that the key-term set K is finite and {x̃k}k∈K span
Rd, thus the existence of a barycentric spanner B of K is guaran-
teed [251].

Corresponding vectors in the barycentric spanner are linearly
independent. By choosing key-terms from the barycentric span-
ner, we can quickly explore the unknown user preference vector
θ∗ in various directions. Based on this reasoning, whenever a
conversation is allowed, ConLinUCB-BS selects a key-term

k ∼ unif(B), (7.9)

which means sampling a key-term k uniformly at random from
the barycentric spanner B of K. ConLinUCB-BS is completed us-
ing the above strategy as π in the ConLinUCB framework (Alg.
10). As shown in the following Lemma 7.3.1 and Lemma 7.3.2,
in ConLinUCB-BS, the statistical estimation uncertainty shrinks
quickly. Additionally, since the barycentric spanner B of the
key-term set K can be precomputed offline, ConLinUCB-BS is
computationally efficient, which is vital for real-time recommen-
dations.
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7.3.3 ConLinUCB with key-terms having Max Confi-
dence Radius (ConLinUCB-MCR)

We can further improve ConLinUCB-BS in the following aspects.
First, ConLinUCB-BS does not apply in a more general setting
where the key-term set K varies over time since it needs a pre-
computed barycentric spanner B of K. Second, as the selection
of key-terms is independent of past observations, ConLinUCB-BS
does not fully leverage the historical information. For example,
suppose the agent is already certain about whether the user favors
sports based on previous interactions. In that case, it does not
need to ask for the user’s feedback on the key-term sports any-
more. To address these issues, we propose the ConLinUCB-MCR
algorithm that (i) is applicable when the key-term set K varies
with t and (ii) can adaptively conduct explorative conversations
based on historical interactions.

In multi-armed bandits, confidence radius is used to capture
whether an arm has been well explored in the interactive his-
tory, and it will shrink whenever the arm is selected. Moti-
vated by this, if a key-term has a large confidence radius, it
means the system has not sufficiently explored the user’s pref-
erences in its related items, indicating that this key-term is ex-
plorative. Based on this reasoning, ConLinUCB-MCR selects
key-terms with maximal confidence radius to conduct explorative
conversations apdaptively. Specifically, when a conversation is
allowed at t, ConLinUCB-MCR chooses a key-term as follow

k ∈ argmax
k∈Kt

αt ‖x̃k‖M−1
t

, (7.10)



7.3. ALGORITHMS AND THEORETICAL ANALYSIS 123

where αt is defined in Eq. (7.8) and Kt ⊆ K denotes the possibly
time-varying key-terms set available at round t. ConLinUCB-
MCR is completed using the above strategy (Eq. (7.10)) as π in
ConLinUCB (Alg. 10).

7.3.4 Theoretical Analysis

We give upper bounds of the regret for our algorithms. As a
convention, the conversation frequency satisfies b(t) ≤ t, so we
assume b(t) = b · t, b ∈ (0, 1). We leave the proofs of Lemma
7.3.1-7.3.2 and Theorem 7.3.3-7.3.4 to the Appendix due to the
space limitation.

The following lemma shows a high probability upper bound
of the difference between θt and θ∗ in the direction of the action
vector xa for algorithms based on ConLinUCB.

Lemma 7.3.1. At ∀t, for any a ∈ A, with probability at least
1− δ for some δ ∈ (0, 1)∣∣x>a (θt − θ∗)

∣∣ ≤ αt ‖xa‖M−1
t

= Ca,t,

where αt =
√

2 log(1δ ) + d log(1 + t+b(t)
βd ) +

√
β.

For a barycentric spanner B of the key-term set K, let

λB := λmin(Ek∼unif(B)[x̃kx̃
>
k ]) > 0 , (7.11)

where λmin(·) denotes the minimum eigenvalue of the augment.
We can get the following Lemma that gives a high probability
upper bound of ‖xa‖M−1

t
for ConLinUCB-BS.
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Figure 7.1: Experimental results on synthetic dataset
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Lemma 7.3.2. For ConLinUCB-BS, ∀a ∈ A, at ∀t ≥ t0 =
256
bλ2

B
log(128d

λ2
Bδ
), with probability at least 1− δ for δ ∈ (0, 18 ]

‖xa‖M−1
t
≤
√

2

λBbt
.

The following theorem gives a high probability regret upper
bound of our ConLinUCB-BS.

Theorem 7.3.3. With probability at least 1−δ for some δ ∈ (0, 14 ],
the regret R(T ) of ConLinUCB-BS satisfies

R(T ) ≤ 4

√
2

bλB

√
T

(√
2 log(2

δ
) + d log(1 + (1 + b)T

βd
)

+
√

β

)
+

256

bλ2
B
log(256d

λ2
Bδ

) + 1 .

Recall that the regret upper bound of ConUCB [62] is

R(T ) ≤ 2

√
2Td log(1 + λ(T + 1)

(1− λ)d
)

(√
1− λ

λ

+

√
1− λ

λβ

√
2 log(2

δ
) + d log(1 + bT

βd
)

+

√
2 log(2

δ
) + d log(1 + λT

(1− λ)d
)

)
,

which is of O(d
√
T logT ). The regret bound of ConLinUCB-BS

given in Theorem 7.3.3 is of O(d
√
T logT ) (as λB is of order O(1d)),

better than ConUCB by reducing a multiplicative
√
logT term.

Next, the following theorem gives a high-probability regret up-
per bound of ConLinUCB-MCR.
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Theorem 7.3.4. With probability at least 1−δ for some δ ∈ (0, 1),
the regret R(T ) of ConLinUCB-MCR satisfies

R(T ) ≤ 2

√
2Td log(1 + T + 1

βd
)

×

(√
β +

√
2 log(1

δ
) + d log(1 + (b+ 1)T

βd
)

)
.

Note that the regret upper bound of ConLinUCB-MCR is
smaller than ConUCB by reducing some additive terms.

7.4 Experiments on Synthetic Dataset

In this section, we show the experimental results on synthetic
data. To obtain the offline-precomputed barycentric spanner B,
we use the method proposed in [251].

7.4.1 Experimental Settings

7.4.1.1 Generation of the synthetic dataset.

We create a set of arms A with |A| = 5, 000 arms, and a set of
key-terms K with |K| = 500. We set the dimension of the feature
space to be d = 50 and the number of users Nu = 200.

For each user preference vector θ∗u and each arm feature vector
xa, each entry is generated by independently drawing from the
standard normal distribution N (0, 1), and all these vectors are
normalized such that ‖θ∗u‖2 = 1, ‖xa‖2 = 1. The weight matrix
W ≜ [wa,k] is generated as follows: First, for each key-term k, we
select an integer nk ∈ [1, 10] uniformly at random, then randomly
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Figure 7.2: Experimental results on real-word datasets
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select a subset of nk arms Ak to be the related arms for key-term
k; second, for each arm a, if it is related to a set of na key-
terms Ka, we assign equal weights wa,k =

1
na
, ∀k ∈ Ka. Following

[62], the feature vector for each key-term k is computed using
x̃k =

∑
a∈A

wa,k∑
a′∈A wa′,k

xa. The arm-level rewards and key-term-
level feedback are generated following Eq. (7.1) and Eq. (7.3).

7.4.1.2 Baselines.

We compare our algorithms with the following baselines:

• LinUCB [41]: A state-of-the-art contextual linear bandit al-
gorithm that selects arms only based on the arm-level feed-
back without using conversational feedback.

• Arm-Con [61]: A conversational bandit algorithm that con-
ducts conversations on arms without considering key-terms,
and uses LinUCB for arm selection.

• ConUCB [62]: The core conversational bandit algorithm
that selects a key-term to minimize some estimation error
whenever a conversation is allowed.

• ConLinUCB-UCB: An algorithm using a LinUCB-alike method
as the key-term selection strategy in our proposed ConLin-
UCB framework, i.e., choose key-term k ∈ argmax

k∈Kt

x̃>k θt +

αt ‖x̃k‖M−1
t

at round t.

7.4.2 Evaluation Results

This section first shows the results when the key-term set K is
fixed. In this case, we evaluate the regret R(T ) for all algo-
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Alogrithm Total time Total time for selecting arms Total time for selecting key-terms
ConUCB 11,297 5,217 6,080

ConLinUCB-UCB 5,738 3,060 2,678
ConLinUCB-MCR 4,821 3,030 1,791
ConLinUCB-BS 3,127 3,120 6

Table 7.1: Total runninng time (in seconds) of algorithms on Movielens with
T = 5, 000.

rithms, and we study the impact of the conversation frequency
function b(t) and the number of arms |At| available at each round
t. When K varies with time, ConLinUCB-BS does not apply, and
we compare the regret of other algorithms. Following [62], we set
T = 1, 000, b(t) = 5blog(t + 1)c and |At| = 50, unless otherwise
stated.

7.4.2.1 Cumulative regret

We run the experiments 10 times and calculate the average re-
gret of all the users for each algorithm. We include ±std as the
error bar, where std stands for the standard deviation. The re-
sults are given in Figure 7.1 (a). First, all other algorithms out-
perform LinUCB, showing the advantage of conversations. Fur-
ther, with our proposed ConLinUCB framework, even if we use
ConLinUCB-UCB with a simple LinUCB-alike key-term selec-
tion strategy, the performance is already better than ConUCB
(34.91% improvement), showing more efficient information in-
corporation. With explorative conversations, ConLinUCB-BS
and ConLinUCB-MCR achieve much lower regrets (37.00% and
43.10% improvement over ConUCB respectively), indicating bet-
ter learning accuracy. ConLinUCB-MCR further leverages histor-
ical information to conduct explorative conversations adaptively,
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thus achieving the lowest regret.

7.4.2.2 Impact of conversation frequency function b(t)

A larger b(t) means the agent can conduct more conversations.
We set b(t) = fq · blog tc and vary fq to change the conversation
frequencies, i.e., fq ∈ {5, 10, 20, 30}. The results are shown in
Figure 7.1 (b). With larger b(t), our algorithms have less regret,
showing the power of conversations. In all cases, ConLinUCB-BS
and ConLinUCB-MCR have lower regrets than ConUCB, and
ConLinUCB-MCR performs the best.

7.4.2.3 Impact of |At|

We vary |At| to be 25, 50, 100, 200, 500. To clearly show the
advantage of our algorithms, we evaluate the difference in regrets
between LinUCB and other algorithms, i.e., RLinUCB(T )− R(T ),
representing the improved accuracy of the conversational bandit
algorithms as compared with LinUCB. Note that the larger |At| is,
the harder it is for the algorithm to identify the best arm. Results
in Figure 7.1 (c) show that as |At| increases, the advantages of
ConLinUCB-BS and ConLinUCB-MCR become more significant.
Particularly, when |At|=25, ConLinUCB-BS and ConLinUCB-
MCR achieve 34.99% and 40.21% improvement over ConUCB
respectively; when |At|=500, ConLinUCB-BS and ConLinUCB-
MCR achieve 50.36% and 53.77% improvement over ConUCB,
respectively. In real applications, the size of arm set |At| is usually
very large. Therefore, our proposed algorithms are expected to
significantly outperform ConUCB in practice.
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7.4.2.4 Cumulative regret for time-varying K

This section studies the case when only a subset of key-termsKt ⊆
K are available to the agent at each round t, where ConLinUCB-
BS is not applicable as mentioned before. The number of key-
terms available at each time t is set to be |Kt| = 300. At round
t, 300 key-terms are chosen uniformly at random from K to form
Kt. We evaluate the regret of all algorithms except ConLinUCB-
BS. The results are shown in Figure 7.1 (d). We can observe that
ConLinUCB-MCR outperforms all baselines and achieves 43.02%
improvement over ConUCB.

7.5 Experiments on Real-world Datasets

This section shows the experimental results on two real-world
datasets, Last.FM and Movielens. The baselines, generations of
arm-level rewards and key-term-level feedback, and the compu-
tation method of the barycentric spanner are the same as in the
last section. Following the experiments on real data of [62], we set
T = 5, 000, b(t) = 5blog(t + 1)c and |At| = 50, unless otherwise
stated.

7.5.1 Experiment Settings

7.5.1.1 Last.FM and Movielens datasets [252]

Last.FM is a dataset for music artist recommendations contain-
ing 186,479 interaction records between 1,892 users and 17,632
artists. Movielens is a dataset for movie recommendation con-
taining 47,957 interaction records between 2,113 users and 10,197
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movies.

7.5.1.2 Generation of the data

The data is generated following [136, 62, 180]. We treat each
music artist and each movie as an arm. For both datasets, we
extract |A| = 2, 000 arms with the most assigned tags by users
and Nu = 500 users who have assigned the most tags. For each
arm, we keep at most 20 tags that are related to the most arms,
and consider them as the associated key-terms of the arm. All the
kept key-terms associated with the arms form the key-term set K.
The number of key-terms for Last.FM is |K| = 2, 726 and that for
Movielens is 5, 585. The weights of all key-terms related to the
same arm are set to be equal. Based on the interactive recordings,
the user feedback is constructed as follows: if the user has assigned
tags to the item, the feedback is 1, otherwise the feedback is
0. To generate the feature vectors of users and arms, following
[136], we construct a feedback matrix F ∈ RNu×N based on the
above user feedback, and decompose it using the singular-value
decomposition (SVD): F = ΘSX>, where Θ = (θ∗

u), u ∈ [Nu]

and X = (xa), a ∈ [N ]. We select d = 50 dimensions with
highest singular values in S. Following [62], feature vectors of key-
terms are calculated using x̃k =

∑
a∈A

wa,k∑
a′∈A wa′,k

xa. The arm-level
rewards and key-term-level feedback are then generated following
Eq. (7.1) and Eq. (7.3).
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7.5.2 Evaluation Results

This section first shows the results on both datasets in two cases:
K is fixed and K is varying with time t. We also compare the
running time of all algorithms on the Movielens dataset, since it
has more key-terms than Last.FM.

7.5.2.1 Cumulative regret

We run the experiments 10 times and calculate the average re-
gret of all the users over T = 5, 000 rounds on the fixed generated
datasets. The randomness of experiments comes from the ran-
domly chosen At (also Kt in the varying key-term set case) and
the randomness in the ConLinUCB-BS algorithm. We also in-
clude ±std as the error bar. For the time-varying key-term sets
case, we set |Kt| = 1, 000 and randomly select |Kt| key-terms
from K to form Kt at round t. Results on Last.FM and Movie-
lens for fixed key-term set are shown in Figure 7.2 (a) and Figure
7.2 (b). On both datasets, the regrets of ConLinUCB-BS and
ConLinUCB-MCR are much smaller than ConUCB (13.28% and
17.12% improvement on Last.FM, 13.08% and 16.93% improve-
ment on Movielens, respectively) and even the simple ConLinUCB-
UCB based on our ConLinUCB framework outperforms ConUCB.
Results on Last.FM and Movielens for varying key-term sets are
given in Figure 7.2 (c) and Figure 7.2 (d). ConLinUCB-MCR per-
forms much better than ConUCB on both datasets (19.66% and
17.85% improvement on Last.FM and Movielens respectively).
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7.5.2.2 Running time

We evaluate the running time of all the conversational bandit
algorithms on the representative Movielens dataset to compare
their computational efficiency. For clarity, we report the total
running time for selecting arms and key-terms. We set T = 5, 000

and the results are summarized in Table 7.1. It is clear that our
algorithms cost much less time in both key-term selection and
arm selection than ConUCB. Specifically, the improvements of
total running time over ConUCB are 72.32% for ConLinUCB-
BS and 57.32% for ConLinUCB-MCR. The main reason is that
our algorithms estimate the unknown user preference vector in
one single step, whereas ConUCB does it in two separate steps
as mentioned before. For ConLinUCB-BS, the time costed in
the key-term selection is almost negligible, since it just randomly
chooses a key-term from the precomputed barycentric spanner
whenever a conversation is allowed.
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Algorithm 10 General ConLinUCB framework
Input: graph(A,K,W ), conversation frequency function b(t), key-term selec-

tion strategy π.
1 Initialization: M0 = βI, b0 = 0.

for t = 1 to T do
2 if b(t)− b(t− 1) > 0 then
3 q(t) = bb(t)− b(t− 1)c;

while q(t) > 0 do
4 Select a key-term k ∈ K using the specified key-term selection strat-

egy π (e.g., Eq. (7.9) for ConLinUCB-BS and Eq. (7.10) for
ConLinUCB-MCR), and query the user’s preference over it;
Receive the user’s feedback r̃k,t;
Mt = Mt−1 + x̃kx̃

⊤
k ;

bt = bt−1 + x̃kr̃k,t;
q(t) −= 1;

5 end
6 else
7 Mt = Mt−1, bt = bt−1;
8 end
9 θt = M−1

t bt;
Select at = argmax

a∈At

x⊤
a θt + αt ‖xa‖M−1

t
;

Ask the user’s preference on arm at and receive the reward rat,t ;
Mt = Mt−1 + xatx

⊤
at ;

bt = bt−1 + xatrat,t;

10 end



Chapter 8

Variance-Dependent Regret
Bounds for Non-stationary
Linear Bandits

We investigate the non-stationary stochastic linear bandit prob-
lem where the reward distribution evolves each round. Existing
algorithms characterize the non-stationarity by the total varia-
tion budget BK , which is the summation of the change of the
consecutive feature vectors of the linear bandits over K rounds.
However, such a quantity only measures the non-stationarity with
respect to the expectation of the reward distribution, which makes
existing algorithms sub-optimal under the general non-stationary
distribution setting. In this work, we propose algorithms that uti-
lize the variance of the reward distribution as well as the BK , and
show that they can achieve tighter regret upper bounds. Specifi-
cally, we introduce two novel algorithms: RestartedWeightedOFUL+

and Restarted SAVE+. These algorithms address cases where the
variance information of the rewards is known and unknown, re-
spectively. Notably, when the total variance VK is much smaller

136
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than K, our algorithms outperform previous state-of-the-art re-
sults on non-stationary stochastic linear bandits under different
settings. Experimental evaluations further validate the superior
performance of our proposed algorithms over existing works. This
chapter is based on our publication [10].

8.1 Introduction

In this work, we study non-stationary stochastic bandits, which
is a generalization of the classical stationary stochastic bandits,
where the reward distribution is non-stationary. The intuition
about the non-stationary setting comes from real-world applica-
tions such as dynamic pricing and ads allocation, where the envi-
ronment changes rapidly and deviates significantly from station-
arity [183, 253]. Most of the existing works in stochastic bandits
consider a stationary setting where the goal of the agent is to min-
imize the static regret, i.e., the summation of suboptimality gaps
between the agent’s selected arm and the fixed, time-independent
best arm that maximizes the expectation of the reward distribu-
tion. In contrast, for the non-stationary setting, the emphasis
shifts to minimizing the dynamic regret, which represents the gap
between the cumulative reward of selecting the time-dependent
optimal arm at each time and that of the learner. As we can
always treat a stationary bandit instance as a special case of the
non-stationary bandit instance, designing algorithms that work
well under the non-stationary setting is significantly more chal-
lenging.

There have been a series of works aiming to minimize the dy-
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namic regret for non-stationary stochastic bandits, such as Multi-
Armed Bandits (MAB) [183, 184, 185, 186], linear bandits [253,
187, 192, 194, 254], general function approximation [255, 191,
195], and the even more challenging reinforcement learning (RL)
setting [256, 257, 258, 259, 194]. In this work, we mainly consider
the linear bandit setting, where each arm is a contextual vector,
and the expected reward of each arm is assumed to be the lin-
ear product of the arm with an unknown feature vector. Most
existing dynamic regret results for non-stationary linear bandits
depend on both the non-stationarity measurement and the num-
ber of interaction rounds. Specifically, assume K is the total
number of rounds, and for each k ∈ [K], x is one of the arms, θk

and θk+1 are the feature vectors at k and k+1 rounds, satisfying
‖x‖2 ≤ 1. Then, the non-stationarity measurement is often de-
fined as the summation of the changes in the mean of the reward
distribution, which is

BK :=
K∑
k=1

max
x∈Rd
|〈x,θk − θk+1〉| =

K∑
k=1

‖θk − θk+1‖2 . (8.1)

Existing works for non-stationary linear bandits [188, 260, 261,
257, 253, 192] achieved a regret upper bound of Õ(d7/8B

1
4

KK
3
4 ),

where d is the problem dimension. A recent work by [194] pro-
posed a black-box reduction method that can achieve a regret
upper bound of Õ(dB

1
3

KK
2
3 ) in the setting with a fixed arm set

across all rounds. Such regret bounds clearly demonstrate that re-
gret grows as long as the non-stationarity grows, which is aligned
with intuition.

Although existing works clearly demonstrate the relationship
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between the BK and the regret, we claim that it is not sufficient
for us to fully characterize the non-stationary level of the reward
distributions. Consider applications such as hyperparameter tun-
ing in physical systems, the noise distribution may highly depend
on the evaluation point since the measurement noise often largely
varies with the chosen parameter settings [202]. For linear ban-
dits, such examples suggest that the non-stationarity not only
consists of the change of the mean of the distribution, but also
the variance of the distribution. However, none of the previous
works on non-stationary linear bandits considered how to leverage
the variance information to improve regret bounds in the above
heteroscedastic noise setting. Therefore, an open question arises:

Can we design even better algorithms for non-stationary linear
bandits by considering its variance information?

In this paper, we answer this question affirmatively. We as-
sume that at the k-th round, the reward distribution of an arm x
satisfies rk ∼ 〈θk, x〉 + ϵk, where ϵk is a zero-mean noise variable
with variance σ2

k. Our contributions are:

• We establish the first variance-dependent regret lower bound
for non-stationary linear bandits. This result captures the in-
terplay between non-stationarity and variance, which is not
addressed in existing literature for non-stationary linear ban-
dits.

• For the case where the reward variance σ2
k at round k can

be observed and the total variation budget BK is known, we
propose the Restarted-WeightedOFUL+ algorithm, which uses
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variance-based weighted linear regression to deal with het-
eroscedastic noises [203, 76] and a restarted scheme to forget
some historical data to hedge against the non-stationarity. We
prove that the regret upper bound of Restarted-WeightedOFUL+

is Õ(d7/8(BKVK)
1/4
√
K + d5/6B

1/3
K K2/3). Our regret surpasses

the best result for non-stationary linear bandits Õ(dB
1/3
K K2/3)

[194] when the total variance VK = Õ(1) is small, which indi-
cates that additional variance information benefits non-stationary
linear bandit algorithms.

• For the case where the reward variance σ2
k is unknown but

the total variance VK and variation budget BK are known,
we propose the Restarted-SAVE+ algorithm. It maintains a
multi-layer weighted linear regression structure with carefully-
designed weight within each layer to handle the unknown vari-
ances [80]. We prove that Restarted-SAVE+ can achieve a re-
gret upper bound of Õ(d

4
5V

2
5

KB
1
5

KK
2
5 + d

2
3B

1
3

KK
2
3 ). Specifically,

when VK = Õ(1), our regret is also better than the existing
best result Õ(dB

1/3
K K2/3) [194], which again verifies the effect

of the variance information.

• Lastly, we propose Restarted-SAVE+-BOB for the case where
both the reward variance σ2

k and BK are unknown. Restarted-
SAVE+-BOB equips a bandit-over-bandit (BOB) framework to
handle the unknown BK [187], and also maintains a multi-
layer structure as Restarted-SAVE+. We show that Restarted-
SAVE+-BOB achieves a regret upper bound of Õ(d

4
5V

2
5

KB
1
5

KK
2
5+

d
2
3B

1
3

KK
2
3 + d

1
5K

7
10 ), and it behaves the same as Restarted-

SAVE+ when VK = Õ(1) and BK = Ω(d−14K1/10).
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• We also conduct experimental evaluations to validate the out-
performance of our proposed algorithms over existing works.

Notation We use lower case letters to denote scalars, and use
lower and upper case bold face letters to denote vectors and matri-
ces respectively. We denote by [n] the set {1, . . . , n}. For a vector
x ∈ Rd and a positive semi-definite matrix Σ ∈ Rd×d, we denote
by ‖x‖2 the vector’s Euclidean norm and define ‖x‖Σ =

√
x>Σx.

For two positive sequences {an} and {bn} with n = 1, 2, . . . , we
write an = O(bn) if there exists an absolute constant C > 0 such
that an ≤ Cbn holds for all n ≥ 1 and write an = Ω(bn) if there
exists an absolute constant C > 0 such that an ≥ Cbn holds for all
n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors.

8.2 Problem Setting

We consider a heteroscedastic variant of the classic non-stationary
linear contextual bandit problem. Let K be the total number of
rounds. At each round k ∈ [K], the learner interacts with the en-
vironment as follows: (1) the environment generates an arbitrary
arm set Dk ⊆ Rd where each element represents a feasible arm
for the learner to choose, and also generates an unknown feature
vector θk; (2) the leaner observes Dk and selects ak ∈ Dk; (3)
the environment generates the stochastic noise ϵk and reveals the
stochastic reward rk = 〈θk, ak〉 + ϵk to the leaner. We assume
that for all k ≥ 1 and all a ∈ Dk, 〈a,θk〉 ∈ [−1, 1], ‖θk‖2 ≤ B,
‖a‖2 ≤ A.

Following [203, 80], we assume the following condition on the
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Variance Varying
Model Algorithm Regret

-Dependent Arm Set
Require BK

SW-UCB
[253] Õ

(
d

7
8B

1
4
KK

3
4

)
No Yes YesLinear Bandit

BOB
[253]

Õ
(
d

7
8B

1
4
KK

3
4

)
No Yes No

RestartUCB
[192]

Õ
(
d

7
8B

1
4
KK

3
4

)
No Yes Yes

RestartUCB-BOB
[192]

Õ
(
d

7
8B

1
4
KK

3
4

)
No Yes No

LB-WeightUCB
[254]

Õ
(
d

3
4B

1
4
KK

3
4

)
No Yes Yes

MASTER + OFUL
[194]

Õ
(
dB

1
3
KK

2
3

)
No No No

Restarted-WeightedOFUL+ Õ
(
d

7
8 (BKVK)

1
4K

1
2

(Ours) +d
5
6B

1
3
KK

2
3

) Yes Yes Yes

Restarted SAVE+ Õ
(
d

4
5V

2
5
KB

1
5
KK

2
5

(Ours) +d
2
3B

1
3
KK

2
3

) Yes Yes Yes

Restarted SAVE+-BOB Õ
(
d

4
5V

2
5
KB

1
5
KK

2
5

(Ours) +d
2
3B

1
3
KK

2
3 + d

1
5K

7
10

) Yes Yes No

Lower Bound Ω̃
(
d2/3B

1/3
K V

1/3
K K1/3

(Ours) ∧VK +
√
BKK

) Yes Yes -

MAB Rerun-UCB-V Õ
(
|A|

2
3 B

1
3
KV

1
3
KK

1
3

[186] + |A|
1
2 B

1
2
KK

1
2

) Yes No Yes

Lower Bound
[186]

Ω̃
(
B

1
3
KV

1
3
KK

1
3 +B

1
2
KK

1
2

)
Yes No -

Table 8.1: Comparison of non-stationary bandits in terms of regret guarantee.
K is the total rounds, d is the problem dimension for linear bandits, BK is
the total variation budget defined in Section 8.2 (for the MAB setting, BK =∑K

k=1 ‖µk−µk+1‖∞, where µk is the mean of the reward distribution at round
k), VK is the total variance defined in Section 8.2, |A| is the number of arms
for MAB.

random noise ϵk at each round k:

P (|ϵk| ≤ R) = 1, E[ϵk|a1:k, ϵ1:k−1] = 0,

E[ϵ2k|a1:k, ϵ1:k−1] ≤ σ2
k. (8.2)

Following [253, 187, 188, 192], we assume the summation of ℓ2
differences of consecutive θk’s is upper bounded by the total vari-
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ation budget BK , i.e.,
∑K−1

k=1 ‖θk+1 − θk‖2 ≤ BK , where the θk’s
can be adversarially chosen by an oblivious adversary. We also
assume that the total variance is upper bounded by VK , which
is
∑K

k=1 σ
2
k ≤ VK . The goal of the agent is to minimize the dy-

namic regret defined as follows: Regret(K) =
∑

k∈[K]

(
〈a∗k,θk〉 −

〈ak,θk〉
)
, where a∗k = argmaxa∈Dk

〈a,θk〉 is the optimal arm at
round k with the highest expected reward.

8.3 Lower Bound

In this section, we establish a novel variance-dependent regret
lower bound for non-stationary linear bandits, which reveals new
insights into the problem structure.

Theorem 8.3.1. Given K > 0. For any bandit algorithm there
exists θ1, . . . , θK satisfying the problem setting denoted in Section
8.2, such that

Regret(K)

≥ Ω(min{d2/3B1/3
K V

1/3
K K1/3, VK}+

√
BKK).

Proof. See Appendix A.6.3.

Remark 14. Note that [187] proposed a lower bound of Ω(d2/3B1/3
K K2/3)

for general non-stationary linear bandits. However, their result
applies only to cases without the variance restriction VK, making
it inapplicable to our setting.

Theorem 8.3.1 represents the first variance-dependent regret
lower bound specifically tailored for non-stationary linear bandits.
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Algorithm 11 Restarted-WeightedOFUL+

Require: Regularization parameter λ > 0; B, an upper bound on the ℓ2-norm
of θk for all k ∈ [K]; confidence radius β̂k, variance parameters α, γ; restart
window size w.

1: Σ̂1 ← λI, b̂1 ← 0, θ̂1 ← 0, β̂1 =
√
λB

2: for k = 1, . . . , K do
3: if k%w == 0 then
4: Σ̂k ← λI, b̂k ← 0, θ̂k ← 0, β̂k =

√
λB

5: end if
6: Observe Dk and choose ak ← argmaxa∈Dk

〈a,θk〉+ β̂k‖ak‖Σ̂−1
k

7: Observe (rk, σk), set σ̄k as

σ̄k ← max{σk, α, γ‖ak‖1/2
Σ̂

−1
k

} (8.3)

8: Σ̂k+1 ← Σ̂k + aka⊤k /σ̄2
k, b̂k+1 ← b̂k + rkak/σ̄2

k, θ̂k+1 ← Σ̂
−1

k+1b̂k+1

9: end for

The bound highlights the inherent complexity of balancing vari-
ance and non-stationarity, offering a foundation for future work
aimed at designing algorithms with matching upper bounds. No-
tably, our result improves the existing variance-dependent lower
bound Ω(B

1/3
K V

1/3
K K1/3 + B

1/2
K K1/2) [186] by a factor of d2/3 for

the linear bandits setting.

8.4 Non-stationary Linear Contextual Bandit
with Known Variance

In this section, we introduce our Algorithm 11 under the set-
ting where the variance σ2

k at k-th iteration is known to the agent
in prior. We start from WeightedOFUL+ [76], an weighted ridge
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regression-based algorithm for heteroscedastic linear bandits un-
der the stationary reward assumption. For our non-stationary
linear bandit setting where θk is changing over the round k,
WeightedOFUL+ aims to build an θ̂k which estimates the fea-
ture vector θk by using the solution to the following regression
problem:

θ̂k ← argmin
θ

k−1∑
t=1

σ̄−2t (〈θ, at〉 − rt)
2 + λ‖θ‖22, (8.4)

where the weight is defined as in (8.3). After obtaining θ̂k,
WeightedOFUL+ chooses arm ak by maximizing the upper confi-
dence bound (UCB) of 〈a, θ̂〉, with an exploration bonus β̂k‖ak‖Σ̂−1

k

,
where Σ̂k is the covariance matrix over ak. The weight σ̄2

k is in-
troduced to balance the different past examples based on their
reward variance σ2

k, and such a strategy has been proved as a
state-of-the-art algorithm for the stationary heteroscedastic linear
bandits [76]. However, the non-stationary nature of our setting
prevents us from directly using θ̂k defined in (8.4) as an esti-
mate to θ. Therefore, inspired by the restarting strategy which
has been adopted by previous algorithms for non-stationary lin-
ear bandits [192], we propose Restarted-WeightedOFUL+, which
periodically restarts itself and runs WeightedOFUL+ as its sub-
module. The restart window size is set as w, which is used to
balance the nonstationarity and the total regret and will be fine-
tuned in the next steps. Combined with the restart window size
w, we set {β̂k}k≥1 to

β̂k = 12

√
d log(1 + (k%w)A2

α2dλ
) log(32(log(γ

2

α
+ 1)

(k%w)2

δ
)
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+ 30 log(32(log(γ
2

α
) + 1)

(k%w)2

δ
)
R

γ2
+
√
λB. (8.5)

We now propose the theoretical guarantee for Algorithm 8.
The following key lemma shows how nonstationarity affects our
estimation of the reward of each arm.

Lemma 8.4.1. Let 0 < δ < 1. Then with probability at least
1− δ, for any action a ∈ Rd, we have

|a>(θ̂k − θk)| ≤
A2

α

√
dw

λ

k−1∑
t=w·bk/wc+1

‖θt − θt+1‖2︸ ︷︷ ︸
Drifting term

+ β̂k‖a‖Σ̂−1

k︸ ︷︷ ︸
Stochastic term

.

Proof. See Appendix A.6.4 for the full proof.

Here we provide a proof sketch of Lemma 8.4.1 to show the
technical challenge we need to overcome. Without loss of gener-
ality, we prove the lemma for k ∈ [1, w]. We have

|a>(θ̂k − θk)| ≤

∣∣∣∣∣a>Σ̂−1k

k−1∑
t=1

ata>t
σ̄2
t

(θt − θk)

∣∣∣∣∣
+ ‖a‖

Σ̂
−1

k

‖
k−1∑
t=1

atϵt
σ̄2
t

‖
Σ̂

−1

k

+
√
λB‖a‖

Σ̂
−1

k

, (8.6)

For the first term, it gets involved by the nonstationarity of
θk. By rearranging the summation orders and several calculation
steps, we have
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∣∣∣∣∣a>Σ̂−1k

k∑
t=1

ata>t
σ̄2
t

(θt − θk)

∣∣∣∣∣ ≤
k−1∑
t=1

|a>Σ̂−1k

at
σ̄t
| · ‖at

σ̄t
‖2

· ‖
k−1∑
s=t

(θs − θs+1)‖2 ≤
A2

α

√
dw

λ

k−1∑
s=1

‖θs − θs+1‖2 ,

We would like to highlight the subtleties in both our algo-
rithm design and analysis to get the desired improvement. First,
from here, we can see the necessity of introducing α in the de-
sign of σ̄k in Eq.(8.3), which makes it possible to upper bound
σ̄−1k and get a tunable α in the drifting term, which can subse-
quently be used to optimize the regret bound. Second, we show
that it is essential to split the term σ̄−2t as how we did. Only
by doing that can we bound the

∑s
t=1

at
σ̄t

>Σ̂
−1
k

at
σ̄t

term by d with
the elliptical potential lemma. Otherwise, we can get a 1/α2

term rather than the A/α term, which will hurt the final regret
bound. For the second term in Eq.(8.6), a vanilla way to con-
trol it is adopting a self-normalized concentration inequality from
[43]. However, it can not utilize variance information, but just
the magnitude of the noise, which fails to get a tight bound with
the variance information. Inspired by [76, 203, 80], we adapt a
variance-adaptive concentration inequality in Theorem A.6.3 to
get a tighter bound. Similar arguments also hold for the proof of
Theorem 8.5.1 for the unknown variance case. We refer to Ap-
pendix A.6.4 for the full proof. Lemma 8.4.1 suggests that under
the non-stationary setting, the difference between the true ex-
pected reward and our estimated reward will be upper bounded
by two separate terms. The first drifting term characterizes the
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error caused by the non-stationary environment, and the second
stochastic term characterizes the error caused by the estimation
of the stochastic environment. Note thata similar bound has also
been discovered in [257]. We want to emphasize that our bound
differs from existing ones in 1) an additional variance parameter
α in the drifting term, and 2) a weighted convariance matrix Σ̂

rather than a vanilla convariance matrix.
Next we present our main theorem.

Theorem 8.4.2. Let 0 < δ < 1. By treating A, λ,B,R as con-
stants and setting γ2 = R/

√
d, with probability at least 1− δ, the

regret of Restarted-WeightedOFUL+ is bounded by

Regret(K) = Õ(BKw
3/2d1/2α−1 + dKα/

√
w

+ d
√

KVK/w + dK/w). (8.7)

Proof. See Appendix A.6.5.

Remark 15. For the stationary linear bandit case where BK =

0, we can set the restart window size w = K and the variance
parameter α = 1/

√
K, then we obtain an Õ(d

√
VK + d) regret for

Algorithm 8, which is identical to the one in [76].

Next, we aim to select parameters α and w in order to optimize
(8.7).

Corollary 8.1. Assume that BK , VK ∈ [Ω(1), O(K)]. Then by
selecting

w = d1/4
√

VK/BK , dV 6
K ≥ K4B2

K ,

w = d1/6(K/BK)
1/3 otherwise.



8.4. NON-STATIONARY LINEAR CONTEXTUAL BANDIT WITH KNOWN VARIANCE149

and α = d−1/4B
1/2
K wK−1/2, the regret is in the order

Regret(K) = Õ(d7/8(BKVK)
1/4
√
K + d5/6B

1/3
K K2/3). (8.8)

Remark 16. We compare the regret of Algo.8 in Corollary 8.1
with previous results in the special cases below.

• In the worst case where VK = O(K), our result becomes
Õ(d7/8B

1/4
K K3/4), matching the state-of-the-art results for

restarting and sliding window strategies [253, 192].

• In the case where the total variance is small, i.e., VK = Õ(1),
assuming that K4 > d, our result becomes Õ(d5/6B

1/3
K K2/3),

better than all the previous results [253, 192, 254, 194].

Remark 17. [186] has studied non-stationary MAB with dynamic
variance. With the knowledge of VK and BK, [186] proposed a
restart-based Rerun-UCB-V algorithm with a Õ(|A|

2
3 B

1
3

KV
1
3

KK
1
3 +

|A|
1
2 B

1
2

KK
1
2 ) regret, where A is the action set. Reduced to the

MAB setting, our Restarted-WeightedOFUL+ achieves an
Õ(|A|7/8(BKVK)

1/4
√
K + |A|5/6B1/3

K K2/3) regret, which is worse
than [186]. We claim that this is due to the generality of the linear
bandits, which brings us a looser bound to the drifting term in
Lemma 8.4.1. When restricting to the MAB setting, our drifting
term enjoys a tighter bound, which could further tighten our final
regret. To develop an algorithm achieving the same regret as [186]
is beyond the scope of this work.

Remark 18. [186] has established a lower bound Ω̃(B
1
3

KV
1
3

KK
1
3 +

B
1
2

KK
1
2 ) for MAB with total variance VK and total variation budget
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BK. There still exist gaps between our regret and their lower
bound regarding the dependence of K,VK , BK, and we leave to fix
the gaps as future work.

8.5 Non-stationary Linear Contextual Bandit
with Unknown Variance and Total Varia-
tion Budget

By Theorem 8.4.2, we know that Algorithm 8 is able to utilize
the total variance VK and obtain a better regret result compared
with existing algorithms which do not utilize VK . However, the
success of Algorithm 8 depends on the knowledge of the per-round
variance σk, and it also depends on a good selection of restart
window size w, whose optimal selection depends on both VK and
BK . In this section, we aim to relax these two requirements with
still better regret results.

8.5.1 Unknown Per-round Variance, Known VK and BK

We first aim to relax the requirement that each σ2
k is known

to the agent at the beginning of k-th round. We follow the SAVE
algorithm [80] which introduces a multi-layer structure [42, 262]
to deal with unknown σ2

k. In detail, SAVE maintains multiple
estimates to the current feature vector θk, which we denote them
as θ̂k,1, ..., θ̂k,L in line 2. Each θ̂k,ℓ is calculated based on a subset
Ψ̂k,ℓ ⊆ [k − 1] of samples {(at, rt)}. The rule that whether to
add the current k to some Ψ̂k,ℓ is based on the uncertainty of ak
with the sample set {(at, rt)}t∈Ψ̂k,ℓ

. As long as ak is too uncertain
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Algorithm 12 Restarted SAVE+

Require: α > 0; the upper bound on the ℓ2-norm of a in Dk(k ≥ 1), i.e., A;
the upper bound on the ℓ2-norm of θk (k ≥ 1), i.e., B; restart window size
w.

1: Initialize L← dlog2(1/α)e.
2: Initialize the estimators for all layers: Σ̂1,ℓ ← 2−2ℓ · I, b̂1,ℓ ← 0, θ̂1,ℓ ← 0,

β̂1,ℓ ← 2−ℓ+1, Ψ̂1,ℓ ← ∅ for all ℓ ∈ [L].
3: for k = 1, . . . , K do
4: if k%w == 0 then
5: Set Σ̂k,ℓ ← 2−2ℓ · I, b̂k,ℓ ← 0, θ̂k,ℓ ← 0, β̂1,ℓ ← 2−ℓ+1, Ψ̂k,ℓ ← ∅ for all

ℓ ∈ [L].
6: end if
7: Observe Dk, choose ak ← argmaxa∈Dk

minℓ∈[L]〈a, θ̂k,ℓ〉 + β̂k,ℓ‖a‖Σ̂−1
k,ℓ

and
observe rk.

8: Set ℓk ← L+ 1

9: Let Lk ← {ℓ ∈ [L] : ‖ak‖Σ̂−1
k,ℓ
≥ 2−ℓ}, set ℓk ← min(Lk) if Lk 6= ∅

10: Ψ̂k,ℓk ← Ψ̂k,ℓk ∪ {k}
11: if Lk 6= ∅ then
12: Set wk ← 2−ℓk

∥ak∥Σ̂−1
k,ℓk

and update

Σ̂k+1,ℓk ← Σ̂k,ℓk + w2
kaka⊤k , b̂k+1,ℓ ← b̂k,ℓk + w2

k · rkak, θ̂k+1,ℓk ← Σ̂
−1

k+1,ℓk
b̂k+1,ℓk .

13: Compute the adaptive confidence radius β̂k+1,lfor the next round ac-
cording to (8.9).

14: end if
15: For ℓ 6= ℓk let Σ̂k+1,ℓ ← Σ̂k,ℓ, b̂k+1,ℓ ← b̂k,ℓ, θ̂k+1,ℓ ← θ̂k,ℓ, β̂k+1,ℓ ← β̂k,ℓ.

16: end for

w.r.t. some level ℓk (line 9), we add k to Ψ̂k,ℓ and update the
estimate θ̂k,ℓk accordingly (line 12). Each θ̂k,ℓk is calculated as
the solution of a weighted regression problem, where the weight
wk is selected as the inverse of the uncertainty of the arm ak w.r.t.
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the samples in the ℓ-th layer. Maintaining L different θ̂k,ℓ, ℓ ∈ [L],
Algorithm 12 then calculates L number of UCB for each arm a
w.r.t. L different θ̂k,ℓ, and selects the arm which maximizes the
minimization of L UCBs (line 7). It has been shown in [80] that
such a multilayer structure is able to utilize the VK information
without knowing the per-round variance σ2

k. Similar to Algorithm
8, in order to deal with the nonstationarity issue, we introduce
a restarting scheme that Algorithm 12 restarts itself by a restart
window size w (line 5).

Next we show the theoretical guarantee of Algorithm 12. We
call the restart time rounds grids and denote them by g1, g2, . . . gdKw e−1,
where gi%w = 0 for all i ∈ [dKw e − 1]. Let ik be the grid index
of time round k, i.e., gik ≤ k < gik+1. We denote Ψ̂k,ℓ := {t : t ∈
[gik , k − 1], ℓt = ℓ}. We define the confidence radius β̂k,ℓ at round
k and layer ℓ as

β̂k,ℓ := 16 · 2−ℓ
√(

8V̂ark,ℓ + 6R2 log(4(w + 1)2L

δ
) + 2−2ℓ+4

)
×
√

log(4w
2L

δ
) + 6 · 2−ℓR log(4w

2L

δ
) + 2−ℓB, (8.9)

where we set V̂ark,ℓ as
∑

i∈Ψ̂k,ℓ
w2

i

(
ri−〈θ̂k,ℓ, ai〉

)2, if 2ℓ ≥ 64

√
log
(
4(w+1)2L

δ

)
,

or R2
∣∣∣Ψ̂k,ℓ

∣∣∣ for the remaining cases.
Note that our selection of the confidence radius β̂k,ℓ only de-

pends on V̂ark,ℓ, which serves as an estimate of the total variance
of samples at ℓ-th layer without knowing σ2

k.
We build the theoretical guarantee of Algorithm 12 as follows.
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Theorem 8.5.1. Let 0 < δ < 1. Define {βk,ℓ}k≥1,ℓ∈[L] as in (8.9),
regarding A,R as constants, we have

Regret(K) = Õ(
√
dw1.5BK/α + α2(K +

√
wKVK)

+ d
√
KVK/w + dK/w).

Proof. See Appendix A.6.6 for the full proof.

Remark 19. Like Remark 15, we consider the case where BK =

0. We set w = K and α2 = 1/K
√
VK, then we obtain a regret

Õ(d
√
VK + d), which matches the regret of the SAVE algorithm

in [80].
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Figure 8.1: The regret of Restarted-WeightedOFUL+, Restarted SAVE+,
SW-UCB and Modified EXP3.S under different total rounds.

Corollary 8.2. Assume that BK , VK ∈ [Ω(1), O(K)], then by
selecting

w = d1/3(K/BK)
1/3, K2 ≥ V 3

Kd/BK ,

w = d2/5(KVK)
1/5/B

2/5
K otherwise.
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and α = d1/6
√
wB

1/3
K /(K1/3 + (VKKw)1/6), we have

Regret(K) = Õ(d4/5V
2/5
K B

1/5
K K2/5 + d2/3B

1/3
K K2/3).

Remark 20. We discuss the regret of Algo.12 in Corollary 8.2 in
the following special cases. In the case where the total variance is
small, i.e., VK = Õ(1), assuming that K2 > d, our result becomes
Õ(d2/3B

1/3
K K2/3), better than all the previous results [253, 192,

254, 194]. In the worst case where VK = O(K), our result becomes
Õ(d4/5B

1/5
K K4/5).

Unknown Per-round Variance, Unknown VK and BK In
Corollary 8.2, we need to know the total variance VK and total
variation budget BK to select the optimal w and α. To deal
with the more general case where VK and BK are unknown, we
can employ the Bandits-over-Bandits (BOB) mechanism ([187,
254, 192]). We name the Restarted SAVE+ algorithm with BOB
mechanism as“Restarted SAVE+-BOB”. Due to the space limit,
we put the algorithm design, descriptions, and theoretical analysis
of Restarted SAVE+-BOB (Algo.18) in Appendix A.6.1.

8.6 Experiments

To validate the effectiveness of our methods, we conduct a series
of experiments on the synthetic data.
Problem Setting and Baselines Following the experimental
set up in [187], we consider the 2-armed bandits setting, where
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the action set Dk = {(1, 0), (0, 1)}, and

θk =

(
0.5 + 3

10 sin(5BKπk/K)

0.5 + 3
10 sin(π + 5BKπk/K)

)
.

It is easy to see that the total variation budget can be bounded as
BK . At each round k, the ϵk satisfies the following distribution:

ϵk ∼ Bernoulli(0.5/k)− 0.5/k.

We can verify that under such a distribution for ϵk, the variance
of the reward distribution at k-th round is (1−0.5/k) ·0.5/k, and
the total variance VK ∼ logK.

We compare the proposed Restarted-WeightedOFUL+ and
Restarted SAVE+ with SW-UCB [187] and Modified EXP3.S [263].
We leave the detailed setup for the baselines in Appendix A.6.2.
Result We plot the results in Figure.8.1, where all the empirical
results are averaged over ten independent trials and the error bar
is the standard error divided by

√
10. The results are consistent

with our theoretical findings. It is evident that our algorithms
significantly outperform both SW-UCB and Modified EXP3.S.
Among our proposed algorithms,
Restarted-WeightedOFUL+ achieves the best performance. This
can be attributed to the fact that it knows the variance and can
make more informed decisions. Although Restarted SAVE+ per-
formed slightly worse than Restarted-WeightedOFUL+, it still
outperforms the baseline algorithms, particularly when BK =

K1/3. These results highlight the superiority of our methods.



Chapter 9

Online Clustering of Dueling
Bandits

The contextual multi-armed bandit (MAB) is a widely used frame-
work for problems requiring sequential decision-making under un-
certainty, such as recommendation systems. In applications in-
volving a large number of users, the performance of contextual
MAB can be significantly improved by facilitating collaboration
among multiple users. This has been achieved by the clustering of
bandits (CB) methods, which adaptively group the users into dif-
ferent clusters and achieve collaboration by allowing the users in
the same cluster to share data. However, classical CB algorithms
typically rely on numerical reward feedback, which may not be
practical in certain real-world applications. For instance, in rec-
ommendation systems, it is more realistic and reliable to solicit
preference feedback between pairs of recommended items rather
than absolute rewards. To address this limitation, we introduce
the first ”clustering of dueling bandit algorithms” to enable col-
laborative decision-making based on preference feedback. We pro-
pose two novel algorithms: (1) Clustering of Linear Dueling Ban-

156
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dits (COLDB) which models the user reward functions as linear
functions of the context vectors, and (2) Clustering of Neural Du-
eling Bandits (CONDB) which uses a neural network to model
complex, non-linear user reward functions. Both algorithms are
supported by rigorous theoretical analyses, demonstrating that
user collaboration leads to improved regret bounds. Extensive
empirical evaluations on synthetic and real-world datasets fur-
ther validate the effectiveness of our methods, establishing their
potential in real-world applications involving multiple users with
preference-based feedback.

9.1 Introduction

The contextual multi-armed bandit (MAB) is a widely used method
in real-world applications requiring sequential decision-making
under uncertainty, such as recommendation systems, computer
networks, among others [41]. In a contextual MAB problem, a
user faces a set of K arms (i.e., context vectors) in every round,
selects one of these K arms, and then observes a corresponding
numerical reward [139]. In order to select the arms to maxi-
mize the cumulative reward (or equivalently minimize the cumu-
lative regret), we often need to consider the trade-off between the
exploration of the arms whose unknown rewards are associated
with large uncertainty and exploitation of the available observa-
tions collected so far. To carefully handle this trade-off, we often
model the reward function using a surrogate model, such as a
linear model [42] or a neural network [160].

Some important applications of contextual MAB, such as rec-
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ommendation systems, often involve a large number (e.g., in the
scale of millions) of users, which opens up the possibility of further
improving the performance of contextual MAB via user collabo-
ration. To this end, the method of online Clustering of Bandits
(CB) has been proposed, which adaptively partitions the users
into a number of clusters and leverages the collaborative effect
of the users in the same cluster to achieve improved performance
[46, 4, 136].

Classical CB algorithms usually require an absolute real-valued
numerical reward as feedback for each arm [4]. However, in some
crucial applications of contextual MAB, it is often more realis-
tic and reliable to request the users for preference feedback. For
example, in recommendation systems, it is often preferable to
recommend a pair of items to a user and then ask the user for
relative feedback (i.e., which item is preferred) [58]. As another
example, contextual MAB has been successfully adopted to opti-
mize the input prompt for large language models (LLMs), which
is often referred to as prompt optimization [59, 264]. In this ap-
plication, instead of requesting an LLM user for a numerical score
as feedback, it is more practical to show the user a pair of LLM
responses generated by two candidate prompts and ask the user
which response is preferred [59, 60].

A classical and principled approach to account for preference
feedback in contextual MAB is the framework of contextual du-
eling bandit [155, 157, 156, 159]. In every round of contextual
dueling bandits, a pair of arms are selected, after which a binary
observation is collected reflecting which arm is preferred. How-
ever, classical dueling bandit algorithms are not able to leverage
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the collaboration of multiple users, which leaves significant un-
tapped potential to further improve the performance in these ap-
plications involving preference feedback. In this work, we bring
together the merits of both approaches, and hence introduce the
first clustering of dueling bandit algorithms, enabling multi-user
collaboration in scenarios involving preference feedback.

We firstly proposed our Clustering Of Linear Dueling Bandits
(COLDB) algorithm (Sec. 9.3.1), which assumes that the latent
reward function of each user is a linear function of the context
vectors (i.e., the arm features). In addition, to handle challeng-
ing real-world scenarios with complicated non-linear reward func-
tions, we extend our COLDB algorithm to use a neural network
to model the reward function, hence introducing our Clustering Of
Neural Dueling Bandits (CONDB) algorithm (Sec. 9.3.2). Both
algorithms adopt a graph to represent the estimated clustering
structure of all users, and adaptively update the graph to itera-
tively refine the estimate. After receiving a user in every round,
our both algorithms firstly assign the user to its estimated cluster,
and then leverage the data from all users in the estimated cluster
to learn a linear model (COLDB) or a neural network (CONDB),
which is then used to select a pair of arms for the user to query for
preference feedback. After that, we update the reward function
estimate for the user based on the newly observed feedback, and
then update the graph to remove its connection with users who
are estimated to belong to a different cluster.

We conduct rigorous theoretical analysis for both our COLDB
and CONDB algorithms, and our theoretical results demonstrate
that the regret upper bounds of both algorithms are sub-linear
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and that a larger degree of user collaboration (i.e., when a larger
number of users belong to the same cluster on average) leads
to theoretically guaranteed improvement (Sec. 9.4). In addition,
we also perform both synthetic and real-world experiments to
demonstrate the practical advantage of our algorithms and the
benefit of user collaboration in contextual MAB problems with
preference feedback (Sec. 9.5).

9.2 Problem Setting

This section formulates the problem of clustering of dueling ban-
dits. In the following, we use boldface lowercase letters for vectors
and boldface uppercase letters for matrices. The number of ele-
ments in a set A is denoted as |A|, while [m] refers to the index
set {1, 2, . . . ,m}, and ‖x‖M =

√
x>Mx represents the matrix

norm of vector x with respect to the positive semi-definite (PSD)
matrix M .

Clustering Structure. Consider a scenario with u users,
indexed by U = {1, 2, . . . , u}, where each user i ∈ U is associated
with a unknown reward function fi : Rd′ → R which maps an arm
x ∈ X ⊂ Rd′ to its corresponding reward value fi(x). We assume
that there exists an underlying, yet unknown, clustering structure
over the users reflecting their behavior similarities. Specifically,
the set of users U is partitioned into m clusters C1, C2, . . . , Cm,
where m� u, and the clusters are mutually disjoint: ∪j∈[m]Cj =

U and Cj ∩ Cj′ = ∅ for j 6= j′. These clusters are referred to
as ground-truth clusters, and the set of clusters is denoted by
C = {C1, C2, . . . , Cm}. Let f j denote the common reward function
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of all users in cluster j and let j(i) ∈ [m] be the index of the
cluster to which user i belongs. If two users i and l belong to the
same cluster, they have the same reward function. That is, for
any ℓ ∈ U , if ℓ ∈ Cj(i), then fℓ = fi = f j(i). Meanwhile, users
from different clusters have distinct reward functions.

Modeling Preference Feedback. At each time step t ∈ [T ],
a user it ∈ U is served. The learning agent observes a set of
context vectors (i.e., arms) Xt ⊆ X ⊂ Rd′, where |Xt| = K ≤ C

for all t. Each arm x ∈ Xt is a feature vector in Rd′ with ‖x‖2 ≤ 1.
The agent assigns the cluster Ct to user it and recommends two
arms xt,1,xt,2 ∈ Xt based on the aggregated historical data from
cluster Ct. After receiving the recommended pair of arms, the
user provides a binary preference feedback yt ∈ {0, 1}, in which
yt = 1 if xt,1 is preferred over xt,2 and yt = 0 otherwise. We model
the binary preference feedback following the widely used Bradley-
Terry-Luce (BTL) model [265, 266]. Specifically, the BTL model
assumes that for user it, the probability that the first arm xt,1 is
preferred over the second arm xt,2 is given by

Pt(xt,1 � xt,2) = µ(fit(xt,1)− fit(xt,2)),

where µ : R → [0, 1] is the logistic function: µ(z) = 1
1+e−z . In

other words, the binary feedback yt is sampled from the Bernoulli
distribution with the probability Pt(xt,1 � xt,2).

We make the following assumption about the preference model:

Assumption 9.1 (Standard Dueling Bandits Assumptions). 1.
|µ(f(x))−µ(g(x))| ≤ Lµ|f(x)−g(x)|, ∀x ∈ X , for any functions
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f, g : Rd′ → R.
2. minx∈X ∇µ(f(x)) ≥ κµ > 0.

Assumption 9.1 is the standard assumption in the analysis of
linear bandits and dueling bandits [267, 157], and when µ is the
logistic function, Lµ = 1/4. The regret incurred by the learning
agent is defined as:

RT =
T∑
t=1

rt =
T∑
t=1

(2fit(x
∗
t )− fit(xt,1)− fit(xt,2)) ,

where x∗t = argmaxx∈Xt
fit(x) represents the optimal arm at

round t. This is a commonly adopted notion of regret in the
analysis of dueling bandits [157, 156].

9.2.1 Clustering of Linear Dueling Bandits

For the linear setting, we assume that each reward function fi is
linear in a fixed feature space ϕ(·), such that fi(x) = θ>i ϕ(x), ∀x ∈
X . The feature mapping ϕ : Rd′ → Rd is a fixed mapping with
‖ϕ(x)‖2 ≤ 1 for all x ∈ X . In the special case of classical linear
dueling bandits, we have that ϕ(x) = x, i.e., ϕ(·) is the identity
mapping. The use of ϕ(x) enables us to potentially model non-
linear reward functions given an appropriate feature mapping.

In this case, the reward function of every user i is represented
by its corresponding preference vector θi, and all users in the
same cluster share the same preference vector while users from
different clusters have distinct preference vectors. Denote θj as
the common preference vector of users in cluster Cj, and let j(i) ∈
[m] be the index of the cluster to which user i belongs. Therefore,
for any ℓ ∈ U , if ℓ ∈ Cj(i), then θℓ = θi = θj(i).
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The following assumptions are made regarding the clustering
structure, users, and items:

Assumption 9.2 (Cluster Separation). The preference vectors of
users from different clusters are at least separated by a constant
gap γ > 0, i.e.,∥∥∥θj − θj′

∥∥∥
2
≥ γ for all j 6= j′ ∈ [m].

Assumption 9.3 (Uniform User Arrival). At each time step t,
the user it is selected uniformly at random from U , with probability
1/u, independent of previous rounds.

Assumption 9.4 (Item regularity). At each time step t, the fea-
ture vector ϕ(x) of each arm x ∈ Xt is drawn independently from
a fixed but unknown distribution ρ over {ϕ(x) ∈ Rd : ‖ϕ(x)‖2 ≤
1}, where Ex∼ρ[ϕ(x)ϕ(x)

>] is full rank with minimal eigenvalue
λx > 0. Additionally, at any time t, for any fixed unit vector
θ ∈ Rd, (θ>ϕ(x))2 has sub-Gaussian tail with variance upper
bounded by σ2.

Remark 1. All these assumptions above follow the previous
works on clustering of bandits [46, 226, 135, 227, 137, 4, 5]. For
Assumption 9.3, our results can easily generalize to the case where
the user arrival follows any distribution with minimum arrival
probability ≥ pmin.

9.2.2 Clustering of Neural Dueling Bandits

Here we allow the reward functions fi’s to be non-linear func-
tions. To estimate the unknown reward functions fi’s, we use
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fully connected neural networks (NNs) with ReLU activations,
and denote the depth and width (of every layer) of the NN by
L ≥ 2 and mNN, respectively [160, 161]. Let h(x; θ) represent the
output of an NN with parameters θ and input vector x, which is
defined as follows:

h(x;θ) = WLReLU (WL−1ReLU (· · ·ReLU (W1x))) ,

in which ReLU(x) = max{x, 0}, W1 ∈ RmNN×d, Wl ∈ RmNN×mNN

for 2 ≤ l < L, WL ∈ R1×mNN. We denote the parameters of NN by
θ = (vec (W1) ; · · · vec (WL)), where vec (A) converts an M × N

matrix A into a MN -dimensional vector. We use p to denote the
total number of NN parameters: p = dmNN +m2

NN(L− 1)+mNN,
and use g(x;θ) to denote the gradient of h(x;θ) with respect to
θ.

The algorithmic design and analysis of neural bandit algo-
rithms make use of the theory of the neural tangent kernel (NTK)
[268]. We let all u users use the same initial NN parameters
θ0, and assume that the value of the empircal NTK is bounded:
1

mNN
〈g(x;θ0), g(x;θ0)〉 ≤ 1, ∀x ∈ X . This is a commonly adopted

assumption in the analysis of neural bandits [269, 163]. Let T j

denote total number of rounds in which the users in cluster j is
served. We use Hj to denote the NTK matrix [160] for cluster j,
which is a (TjK) × (TjK)-dimensional matrix. Similarly, we de-
fine hj as the (TjK)×1-dimensional vector containing the reward
function values of all TjK arm feature vectors for cluster j. We
provide the concrete definitions of Hj and hj in App. A.9.1. We
make the following assumptions which are commonly adopted by
previous works on neural bandits [160, 161], for which we provide
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justifications in App. A.9.1.

Assumption 9.5. The reward functions for all users are bounded:
|fi(x)| ≤ 1, ∀x ∈ X , ∀i ∈ U . There exists λ0 > 0 s.t. Hj �
λ0I, ∀j ∈ C. All arm feature vectors satisfy ‖x‖2 = 1 and xj =

xj+d/2, ∀x ∈ Xt, ∀t ∈ [T ].

Denote by f j the common reward function of the users in clus-
ter Cj, and let j(i) ∈ [m] be the index of the cluster to which user
i belongs. Same as Sec. 9.2.1, here all users in the same cluster
share the same reawrd function. Therefore, for any ℓ ∈ U , if
ℓ ∈ Cj(i), then fℓ(x) = fi(x) = f j(i)(x), ∀x ∈ X . The follow-
ing lemma shows that when the NN is wide enough (i.e., mNN is
large), the reward function of every cluster can be modeled by a
linear function.

Lemma 9.2.1 (Lemma B.3 of [161]). As long as the width mNN of
the NN is large: mNN ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)),
then for all clusters j ∈ [m], with probability of at least 1 − δ,
there exits a θj

f such that

f j(x) = 〈g(x;θ0),θ
j
f − θ0〉,

√
mNN

∥∥∥θj
f − θ0

∥∥∥
2
≤
√

2h>j H−1j hj ≤ B,

for all x ∈ Xt, t ∈ [T ] with it ∈ Cj.

We provide the detailed statement of Lemma 9.2.1 in Lemma
A.9.1 (App. A.9.2). For a user i belonging to cluster j(i), we let
θf,i = θ

j(i)
f , then we have that fi(x) = 〈g(x;θ0),θf,i − θ0〉, ∀x ∈

X . As a result of Lemma 9.2.1, for any ℓ ∈ U , if ℓ ∈ Cj(i), we
have that θf,ℓ = θf,i = θj(i), ∀x ∈ X .
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The assumption below formalizes the gap between different
clusters in a similar way to Assumption 9.2.

Assumption 9.6 (Cluster Separation). The reward functions of
users from different clusters are separated by a constant gap γ′:

∥∥∥f j(x)− f j′(x)
∥∥∥
2
≥ γ′ > 0 , ∀j, j ′ ∈ [m] , j 6= j′ ∀x ∈ X .

In neural bandits, we adopt (1/
√
mNN)g(x;θ0) as the fea-

ture mapping. Therefore, our item regularity assumption (As-
sumption 9.4) is also applicable here after plugging in ϕ(x) =

(1/
√
mNN)g(x;θ0).

9.3 Algorithms

9.3.1 Clustering Of Linear Dueling Bandits (COLDB)

Our Clustering Of Linear Dueling Bandits (COLDB) algorithm is
described in Algorithm 13. Here we elucidate the underlying prin-
ciples and operational workflow of COLDB. COLDB maintains a
dynamic graph Gt = (U , Et) encompassing all users, whose con-
nected components represent the inferred user clusters in round
t. Throughout the learning process, COLDB adaptively removes
edges to accurately cluster the users based on their estimated
reward function parameters, thereby leveraging these clusters to
enhance online learning efficiency. The operation of COLDB pro-
ceeds as follows:
Cluster Inference Ct for User it (Line 2-Line 5). Initially,
COLDB constructs a complete undirected graph G0 = (U , E0)
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over the user set (Line 2). As learning progresses, edges are selec-
tively removed to ensure that only users with similar preference
profiles remain connected. At each round t, when a user it comes
to the system with a feasible arm set Xt (Line 4), COLDB identi-
fies the connected component Ct containing it in the maintained
graph Gt−1, which serves as the current estimated cluster for this
user (Line 5).
Estimating Shared Statistics for Cluster Ct (Line 6-Line
7). Once the cluster Ct is identified, COLDB estimates a common
preference vector θt for all users within this cluster by aggregat-
ing the historical feedback from all members of Ct. Specifically,
in Line 6, the common preference vector is determined by mini-
mizing the following loss function:

θt = argmin
θ
−
∑
s∈[t−1]

is∈Ct

(
ys logµ

(
θ> [ϕ(xs,1)− ϕ(xs,2)]

)
+ (1− ys) logµ

(
θ> [ϕ(xs,2)− ϕ(xs,1)]

) )
+

1

2
λ ‖θ‖22 , (9.1)

which corresponds to the Maximum Likelihood Estimation (MLE)
using the data from all users in the cluster Ct. Additionally, in
Line 7, COLDB computes the aggregated information matrix for
Ct, which is subsequently utilized in selecting the second arm xt,2:

Vt−1 = V0 +
∑

s∈[t−1]
is∈Ct

(ϕ(xs,1)− ϕ(xs,2))(ϕ(xs,1)− ϕ(xs,2))
> (9.2)

Arm Recommendation Based on Cluster Statistics (Line
8-Line 9). Leveraging the estimated common preference vector
θt and the aggregated information matrix Vt−1, COLDB proceeds
to recommend two arms as follows:
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• First Arm Selection (xt,1). In Line 8, COLDB selects the
first arm by greedily choosing the arm that maximizes the
estimated reward according to θt:

xt,1 = argmax
x∈Xt

θ
>
t ϕ(x). (9.3)

• Second Arm Selection (xt,2). Following the selection of
xt,1, in Line 9, COLDB selects the second arm by maximizing
an upper confidence bound (UCB):

xt,2 = argmax
x∈Xt

θ
>
t ϕ(x) +

βt
κµ
‖ϕ(x)− ϕ(xt,1)‖V −1

t−1
. (9.4)

Intuitively, Eq.(9.4) encourages the selection of the arm which
both (a) has a large predicted reward value and (b) is different
from xt,1 and the arms selected in the previous t−1 rounds when
the served user belongs to the currently estimated cluster Ct. In
other words, the second arm xt,2 is chosen by balancing explo-
ration and exploitation.
Updating User Estimates and Interaction History (Line
10-Line 11). Upon recommending xt,1 and xt,2, the user re-
ceives binary feedback yt = 1(xt,1 � xt,2) from user it, and
then updates the interaction history Dt = {is,xs,1,xs,2, ys}ts=1

(Line 10). Moreover, COLDB updates the preference vector es-
timate for user it while keeping the estimates for the other users
unchanged (Line 11). Specifically, the preference vector estimate
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θ̂it,t is updated via MLE using the historical data from user it:

θ̂it,t = argmin
θ
−
∑

s∈[t−1]
is=it

(
ys logµ

(
θ>[ϕ(xs,1)− ϕ(xs,2)]

)
+ (1− ys) logµ

(
θ>[ϕ(xs,2)− ϕ(xs,1)]

))
+

λ

2
‖θ‖22 . (9.5)

Dynamic Graph Update (Line 12). Finally, based on the
updated preference estimate θ̂it,t for user it, COLDB reassesses
the similarity between it and the other users. If the discrepancy
between θ̂it,t and θ̂ℓ,t for any user ℓ surpasses a predefined thresh-
old (Line 12), the edge (it, ℓ) is removed from the graph Gt−1,
effectively separating them into distinct clusters. The resultant
graph Gt = (U , Et) is then utilized in the subsequent rounds.

9.3.2 Clustering Of Neural Dueling Bandits (CONDB)

Our Clustering Of Neural Dueling Bandits (CONDB) algorithm
is illustrated in Algorithm 19 (App. A.7), which adopts neu-
ral networks to model non-linear reward functions. Similar to
COLDB, our CONDB algorithm also maintains a dynamic graph
Gt = (U , Et) in which every connected component denotes an
inferred cluster, and adaptively removes the edges between users
who are estimated to belong to different clusters.
Cluster Inference Ct for User it (Line 5). Similar to COLDB
(Algo. 13), when a new user it arrives, our CONDB firstly iden-
tifies the connected component Ct in the maintained graph Gt−1

which contains the user it and then uses it as the estimated cluster
for it (Line 5).
Estimating Shared Statistics for Cluster Ct (Line 6). After
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the cluster Ct is identified, our CONDB algorithm uses the history
of preference feedback observations from all users in the cluster
Ct to train a neural network (NN) to minimize the following loss
function (Line 6):

Lt(θ) = −
1

m

∑
s∈[t−1]

is∈Ct

(
ys logµ (h(xs,1;θ)− h(xs,2;θ))+

(1− ys) logµ (h(xs,2;θ)− h(xs,1;θ))
)
+

λ

2
‖θ − θ0‖22 (9.9)

to yield parameters θt. In addition, similar to COLDB (Algo-
rithm 13), our CONDB computes the aggregated information
matrix for the cluster Ct following Eq.(9.2) . Note that here
we replace ϕ(x) from Eq.(9.2) by the NTK feature representa-
tion ϕ(x) = (1/

√
m)g(x;θ0), in which θ0 represents the initial

parameters of the NN (Sec. 9.2.2).
Arm Recommendation Based on Cluster Statistics (Line
8-Line 9). Next, our CONDB algorithm leverages the trained
NN with parameters θt and the aggregated information matrix
Vt−1 to select the pair of arms. The first arm is selected by greed-
ily maximizing the reward prediction of the NN with parameters
θt (Line 8):

xt,1 = argmax
x∈Xt

h(x;θt). (9.10)

The second arm is then selected optimistically (Line 9):

xt,2 = argmax
x∈Xt

h(x;θt) + νT ‖(ϕ(x)− ϕ(xt,1))‖V −1
t−1

, (9.11)

in which νT ≜ βT +B
√

λ
κµ

+ 1, βT ≜ 1
κµ

√
d̃+ 2 log(u/δ) and B is

defined in Lemma 9.2.1. Here d̃ denotes the effective dimenision
which we will introduce in detail in Sec. 9.4.2.
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Updating User Estimates and Interaction History (Line
10-Line 11). After recommending the pair of arms xt,1 and xt,2,
we collect the preference feedback yt = 1(xt,1 � xt,2) and update
interaction history: Dt = {is,xs,1,xs,2, ys}ts=1 (Line 10). Next, we
update the parameters of the NN used to predict the reward for
user it by minimizing the following loss function (Line 11):

Lit,t(θ) = −
1

mNN

∑
s∈[t−1]
is=it

(
ys logµ (h(xs,1;θ)− h(xs,2;θ))+

(1− ys) logµ (h(xs,2;θ)− h(xs,1;θ))
)
+

λ

2
‖θ − θ0‖22 (9.12)

to yield parameters θ̂it,t. The NN parameters for the other
users remain unchanged.
Dynamic Graph Update (Line 12). Finally, we use the up-
dated NN parameters θ̂it,t for user it to reassess the similarity
between user it and the other users. We remove the edge between
(it, ℓ) from the graph Gt−1 if the difference between θ̂it,t and θ̂ℓ,t is
large enough (Line 12). Intuitively, if the estimated reward func-
tions (represented by the respective parameters of their NNs for
reward prediction) between two users are significantly different,
we separate these two users into different clusters. The updated
graph Gt = (U , Et) is then used in the following rounds.

9.4 Theoretical Analysis

In this section, we present the theoretical results regarding the re-
gret guarantees of our proposed algorithms and provide a detailed
discussion of these findings.



9.4. THEORETICAL ANALYSIS 172

9.4.1 Clustering Of Linear Dueling Bandits (COLDB)

The following theorem provides an upper bound on the expected
regret achieved by the COLDB algorithm (Algo. 13) under the
linear setting.

Theorem 9.4.1. Suppose that Assumptions 9.1, 9.2, 9.3 and 9.4
are satisfied. Then the expected regret of the COLDB algorithm
(Algo. 13) for T rounds satisfies

R(T ) = O
(
u
( d

κ2
µλ̃xγ2

+
1

λ̃2
x

)
logT +

1

κµ
d
√
mT
)

(9.13)

= O
( 1

κµ
d
√
mT
)
, (9.14)

where λ̃x ≜
∫ λx

0 (1−e−
(λx−x)2

2σ2 )Cdx is the problem instance dependent
constant [4, 5].

The proof of this theorem can be found in Appendix A.8. The
regret bound in Eq.(9.13) consists of two terms. The first term
accounts for the number of rounds required to accumulate suffi-
cient information to correctly cluster all users with high proba-
bility, and it scales only logarithmically with the number of time
steps T . The second term captures the regret after successfully
clustering the users, which depends on the number of clusters m,
rather than the potentially huge total number of users u. No-
tably, the regret upper bound is not only sub-linear in T , but
also becomes tighter when there is a smaller number of clusters
m, i.e., when a larger number of users belong to the same cluster
on average. This provides a formal justification for the advan-
tage of cross-user collaboration in our problem setting where only
preference feedback is available.
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In the special case where there is only one user (m = 1), the
regret bound simplifies to O(d

√
T/κµ), which aligns with the clas-

sical results in the single-user linear dueling bandit literature [155,
157, 159]. Compared to the previous works on clustering of ban-
dits with linear reward functions [46, 4, 136], our regret upper
bound has an extra dependency on 1/κµ. Since κµ < 0.25 for the
logistic function, this dependency makes our regret upper bound
larger and hence captures the more challenging nature of the pref-
erence feedback compared to the numerical feedback in classical
clustering of linear bandits.

9.4.2 Clustering Of Neural Dueling Bandits (CONDB)

Let H′ =
∑T

t=1

∑
(i,j)∈C2

K
zij(t)z

i
j(t)

> 1
mNN

, in which zij(t) = g(xt,i;θ0)−
g(xt,j;θ0) and C2

K denotes all pairwise combinations of K arms.
Then, the effective dimension d̃ is defined as follows [60]:

d̃ = log det
(κµ

λ
H′ + I

)
. (9.15)

The definition of d̃ considers the contexts from all users and in
all T rounds. The theorem below gives an upper bound on the
expected regret of our CONDB algorithm (Algo. 19).

Theorem 9.4.2. Suppose that Assumptions 9.1, 9.4, 9.5 and 9.6
are satisfied (let ϕ(x) = (1/

√
mNN)g(x;θ0) in Assumption 9.4).

As long as mNN ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then
the expected regret of the CONDB algorithm (Algo. 19) for T
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rounds satisfies

RT = O

(
u
( d̃

κ2
µλ̃xγ2

+
1

λ̃2
x

)
logT +

(√d̃

κµ
+B

√
λ

κµ

)√
d̃mT

)
(9.16)

= O
((√d̃

κµ
+B

√
λ

κµ

)√
d̃mT

)
. (9.17)

The proof of this theorem can be found in Appendix A.9. The
first term in the regret bound in Eq. 9.16 has the same form as
the first term in the regret bound of COLDB in Eq.(9.13), except
that the input dimension d for COLDB (Eq.(9.13)) is replaced by
the effective dimension d̃ for CONDB (Eq.(9.16)). As discussed
in [60], d̃ is usually larger than the effective dimension in classical
neural bandits [160, 161]. This dependency, together with the
extra dependency on 1/κµ, reflects the added difficulty from the
preference feedback compared to the more informative numerical
feedback in classical neural bandits.

Similar to COLDB (Theorem 9.4.1), the first term in the regret
upper bound of CONDB (Theorem 9.4.2) results from the num-
ber of rounds needed to collect enough observations to correctly
identify the clustering structure. The second term corresponds
to the regret of all users after the correct clustering structure is
identified, which depends on the number of clusters m instead
of the number of users u. Theorem 9.4.2 also shows that the
regret upper bound of CONDB is sub-linear in T , and becomes
improved as the number of users belonging to the same cluster
is increased on average (i.e., when the number of clusters m is
smaller). Moreover, in the special case where the number of clus-
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ters is m = 1, the regret upper bound in Eq.(9.17) becomes the
same as that of the standard neural dueling bandits [60].

9.5 Experimental Results

We use both synthetic and real-world experiments to evaluate the
performance of our COLDB and CONDB algorithms. For both
algorithms, we compare them with their corresponding single-user
variant as the baseline. Specifically, for COLDB, we compare it
with the baseline of LDB_IND, which refers to Linear Dueling
Bandit (Independent) [157], meaning running independent classic
linear dueling bandit algorithms for each user separately; simi-
larly, for CONDB, we compare it with NDB_IND, which stands
for Neural Dueling Bandit (Independent) [60].

COLDB. Our experimental settings mostly follow the designs
from the works on clustering of bandits [4, 136]. In our synthetic
experiment for COLDB, we design a setting with linear reward
functions: fi(x) = θ>i x. We choose u = 200 users, K = 20 arms
and a feature dimension of d = 20, and construct two settings
with m = 2 and m = 5 groundtruth clusters, respectively. In
the experiment with the MovieLens dataset [228], we follow the
experimental setting from [4], a setting with 200 users. Same
as the synthetic experiment, we choose the number of arms in
every round to be K = 20 and let the input feature dimension be
d = 20. We construct a setting with m = 5 clusters. We repeat
each experiment for three independent trials and report the mean
± standard error.
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(a) Synthetic (b) MovieLens
Figure 9.1: Experimental results for our COLDB algorithm with a linear
reward function.

Fig. 9.1 plots the cumulative regret of our COLDB and the
baseline of LDB_IND. The results show that our COLDB algo-
rithm significantly outperforms the baseline of LDB_IND in both
the synthetic and real-world experiments. Moreover, Fig. 9.1 (a)
demonstrates that when m = 2 (i.e., when a larger number of
users belong to the same cluster on average), the performance of
our COLDB is improved, which is consisent with our theoretical
results (Sec. 9.4.1).
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Figure 9.2: Experimental results for our CONDB algorithm with a non-linear
(square) reward function.
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CONDB. We also construct both a synthetic and real-world ex-
periment to evaluate our CONDB algorithm. Most of the ex-
perimental settings are the same as those of the COLDB algo-
rithm described above. The major difference is that instead of
using linear reward functions, here we adopt a non-linear reward
function, i.e., a square function: fi(x) = (θ>i x)

2. The results
in this setting are plotted in Fig. 9.2. Our CONDB algorithm
achieves significantly smaller cumulative regrets than the base-
line algorithm of NDB_IND in both the synthetic and real-world
experiments. Moreover, Fig. 9.2 (a) shows that the performance
of our CONDB is improved when a larger number of users are
in the same cluster on average, i.e., when m = 2. These results
demonstrate the potential of our CONDB algorithm to excel in
problems with complicated non-linear reward functions.
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Algorithm 13 Clustering Of Linear Dueling Bandits (COLDB)

1: Input: f(Ti,t) =

√
λ/κµ+

√
2 log(u/δ)+d log(1+4Ti,tκµ/dλ)

κµ

√
2λ̃xTi,t

, regu-

larization parameter λ > 0, confidence parameter βt ≜√
2 log(1/δ) + d log (1 + tL2κµ/(dλ)), κµ > 0.

2: Initialization: V0 = Vi,0 = λ
κµ

I , θ̂i,0 = 0, ∀i ∈ U , a complete Graph
G0 = (U , E0) over U .

3: for t = 1, . . . , T do
4: Receive the index of the current user it ∈ U , and the current feasible

arm set Xt;
5: Find the connected component Ct for user it in the current graph Gt−1

as the current cluster;
6: Estimate the common preference vector θt for the current cluster Ct:

θt = argminθ −
∑

s∈[t−1]

is∈Ct

(
ys logµ

(
θ⊤ [ϕ(xs,1)− ϕ(xs,2)]

)
+ (1− ys) logµ

(
θ⊤ [ϕ(xs,2)− ϕ(xs,1)]

))

+
λ

2
‖θ‖22 ; (9.6)

7: Calculate aggregated information matrix for cluster Ct: Vt−1 = V0 +∑
s∈[t−1]

is∈Ct

(ϕ(xs,1)− ϕ(xs,2))(ϕ(xs,1)− ϕ(xs,2))
⊤.

8: Choose the first arm xt,1 = argmaxx∈Xt θ
⊤
t ϕ(x);

9: Choose the second arm xt,2 = argmaxx∈Xt θ
⊤
t (ϕ(x)− ϕ(xt,1)) +

βt

κµ
‖ϕ(x)− ϕ(xt,1)‖V −1

t−1
;

10: Observe the preference feedback: yt = 1(xt,1 � xt,2), and update his-
tory: Dt = {is,xs,1,xs,2, ys}s=1,...,t;

11: Update the estimation for the current served user it:

θ̂it,t = arg min
θ
−
∑

s∈[t−1]
is=it

(
ys logµ

(
θ⊤ [ϕ(xs,1)− ϕ(xs,2)]

)
+ (1− ys) logµ

(
θ⊤ [ϕ(xs,2)− ϕ(xs,1)]

))

+
λ

2
‖θ‖22 , (9.7)

keep the estimations of other users unchanged;
12: Delete the edge (it, ℓ) ∈ Et−1 if∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥
2
> f(Tit,t) + f(Tℓ,t) (9.8)

13: end for



Chapter 10

Conclusion and Future Work

In this chapter, we summarize the thesis and list some future
directions that could inspire the follow-up works.

In Chapter 3, we presented a minimalist approach for achiev-
ing horizon-free and second-order regret bounds in RL: simply
train transition models via Maximum Likelihood Estimation fol-
lowed by optimistic or pessimistic planning, depending on whether
we operate in the online or offline learning mode. Our horizon-
free bounds for general function approximation look quite similar
to the bounds in Contextual bandits, indicating that the need for
long-horizon planning does not make RL harder than CB from a
statistical perspective.

Our work has some limitations. First, when extending our re-
sult to continuous function class, we pay ln(H). This ln(H) is
coming from a naive application of the ϵ-net/bracket argument
to the generalization bounds of MLE. We conjecture that this
ln(H) can be elimiated by using a more careful analysis that
uses techiniques such as peeling/chaining [270, 271]. We leave
this as an important future direction. Second, while our model-

179
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based framework is quite general, it cannot capture problems that
need to be solved via model-free approaches such as linear MDPs
[272]. An interesting future work is to see if we can develop the
corresponding model-free approaches that can achieve horizon-
free and instance-dependent bounds for RL with general function
approximation. Finally, the algorithms studied in this work are
not computationally tractable. This is due to the need of per-
forming optimism/pessimism planning for exploration. Deriving
computationally tractacle RL algorithms for the rich function ap-
proximation setting is a long-standing question.

In Chapter 4, we study the zero-shot generalization (ZSG)
performance of offline reinforcement learning (RL). We propose
two offline RL frameworks, pessimistic empirical risk minimiza-
tion and pessimistic proximal policy optimization, and show that
both of them can find the optimal policy with ZSG ability. We
also show that such a generalization property does not hold for
offline RL without knowing the context information of the envi-
ronment, which demonstrates the necessity of our proposed new
algorithms. Currently, our theorems and algorithm design de-
pend on the i.i.d. assumption of the environment selection. How
to relax such an assumption remains an interesting future direc-
tion.

In Chapter 5, we present a new problem of clustering of ban-
dits with misspecified user models (CBMUM), where the agent
has to adaptively assign appropriate clusters for users under model
misspecifications. We propose two robust CB algorithms, RCLUMB
and RSCLUMB. Under milder assumptions than previous CB
works, we prove the regret bounds of our algorithms, which match
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the lower bound asymptotically in T up to logarithmic factors,
and match the state-of-the-art results in several degenerate cases.
It is challenging to bound the regret caused by misclustering users
with close but not the same preference vectors and use inaccurate
cluster-based information to select arms. Our analysis to bound
this part of the regret is quite general and may be of independent
interest. Experiments on synthetic and real-world data demon-
strate the advantage of our algorithms. We would like to state
some interesting future works: (1) Prove a tighter regret lower
bound for CBMUM, (2) Incorporate recent model selection meth-
ods into our fundamental framework to design robust algorithms
for CBMUM with unknown exact maximum model misspecifica-
tion level, and (3) Consider the setting with misspecifications in
the underlying user clustering structure rather than user models.

In Chapter 6, we are the first to propose the novel LOCUD
problem, where there are many users with unknown preferences
and unknown relations, and some corrupted users can occasion-
ally perform disrupted actions to fool the agent. Hence, the agent
not only needs to learn the unknown user preferences and rela-
tions robustly from potentially disrupted bandit feedback, bal-
ance the exploration-exploitation trade-off to minimize regret, but
also needs to detect the corrupted users over time. To robustly
learn and leverage the unknown user preferences and relations
from corrupted behaviors, we propose a novel bandit algorithm
RCLUB-WCU. To detect the corrupted users in the online bandit
setting, based on the learned user relations of RCLUB-WCU, we
propose a novel detection algorithm OCCUD. We prove a regret
upper bound for RCLUB-WCU, which matches the lower bound
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asymptotically in T up to logarithmic factors and matches the
state-of-the-art results in degenerate cases. We also give a theo-
retical guarantee for the detection accuracy of OCCUD. Extensive
experiments show that our proposed algorithms achieve superior
performance over previous bandit algorithms and high corrupted
user detection accuracy.

In Chapter 7, we introduce ConLinUCB, a general frame-
work for conversational bandits with efficient information incor-
poration. Based on this framework, we propose ConLinUCB-
BS and ConLinUCB-MCR, with explorative key-term selection
strategies that can quickly elicit the user’s potential interests.
We prove tight regret bounds of our algorithms. Particularly,
ConLinUCB-BS achieves a bound of O(d

√
T logT ), much bet-

ter than O(d
√
T logT ) of the classic ConUCB. In the empirical

evaluations, our algorithms dramatically outperform the classic
ConUCB. For future work, it would be interesting to consider the
settings with knowledge graphs [182], hierarchy item trees [273],
relative feedback [181] or different feedback selection strategies
[274, 275], and use our framework and principles to improve the
performance of existing algorithms.

In Chapter 8, we study non-stationary stochastic linear ban-
dits in this work. We establish the first variance-dependent regret
lower bound for non-stationary linear bandits, which captures the
interplay between variance, non-stationarity, and dimensionality
in the linear bandit setting, offering new insights into the com-
plexity of this problem. We propose Restarted-WeightedOFUL+

and Restarted SAVE+, two algorithms that utilize the dynamic
variance information of the dynamic reward distribution. We
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show that both of our algorithms are able to achieve better dy-
namic regret compared with best existing results [194] under sev-
eral parameter regimes, e.g., when the total variance VK is small.
Experiment results backup our theoretical claim. It is worth not-
ing there still exist gaps between our current obtained regret and
the lower bound, and to fix such a gap leaves as our future work.

In Chapter 9, we introduce the first clustering of dueling
bandit algorithms for both linear and non-linear latent reward
functions, which enhance the performance of MAB with prefer-
ence feedback via cross-user collaboraiton. Our algorithms es-
timates the clustering structure online based on the estimated
reward function parameters, and employs the data from all users
within the same cluster to select the pair of arms to query for
preference feedback. We derive upper bounds on the cumulative
regret of our algorithms, which show that our algorithms enjoy
theoretically guaranteed improvement when a larger number of
users belong to the same cluster on average. We also use synthetic
and real-world experiments to validate our theoretical findings.
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A.1 Appendix for Chapter 3

A.1.1 Summary of Contents in the Appendix

The Appendix is organized as follows.
In Appendix A.1.2, we provide some new analyses for Eluder

dimension, which we will use for proving the regret bounds for
the online RL setting.

In Appendix A.1.3, we provide some other supporting lemmas
that will be used in our proofs.

In Appendix A.1.4, we provide the detailed proofs for the on-
line RL setting (Section 3.3). Specifically, in Appendix A.1.5 we
give the proof of Theorem 3.3.2; in Appendix A.1.6, we show the
proof of Corollary 3.2; in Appendix A.1.7, we give the proof of
Corollary 3.3.

In Appendix A.1.8, we provide the detailed proofs for the of-
fline RL setting (Section 3.4). Specifically, in Appendix A.1.9 we
give the proof of Theorem 3.4.1; in Appendix A.1.10, we show
the proof of Corollary 3.4; in Appendix A.1.11, we give the proof
of Corollary 3.5; in Appendix A.1.12, we show the proof of the
claim in Example 2.

A.1.2 Analysis regarding the Eluder Dimension

For simplicity, we denote xkh = (skh, a
k
h).

First we have two technical lemma. The first lemma bounds
the summation of “self-normalization” terms by the Eluder di-
mension. Our result generalizes the previous result by [276] from
the ℓ2-Eluder dimension to the ℓ1 case.
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Lemma A.1.1. Suppose for all g ∈ Ψ, |g| ≤ 1 and λ > 1, then
we have

K∑
k=1

H∑
h=1

min
{
1, sup

g∈Ψ

|g(xkh)|∑k−1
k′=1

∑H
h′=1 |g(xk

′

h′)|+
∑h−1

h′=1 |g(xkh′)|+ λ

}
≤ 12 log2(4λKH) ·DE1(Ψ,S ×A, 1/(8λKH)) + λ−1.

Proof [Proof of Lemma A.1.1] We follow the proof steps of The-
orem 4.6 in [276]. For simplicity, we use n = KH, i = kH + h to
denote the indices and denote xkh by xi. Then we need to prove

n∑
i=1

min
{
1, sup

g∈Ψ

|g(xi)|∑i−1
t=1 |g(xt)|+ λ

}
≤ 12 log2(4λn) ·DE1(Ψ,S ×A, 1/(8λn)) + λ−1 (A.1)

Let

gi = argmax
g∈Ψ

|g(xi)|∑i−1
j=1 |g(xj)|+ λ

(A.2)

For any 1/(λn) ≤ ρ ≤ 1 and 1 ≤ j ≤ dlog(4λn)e, we define

Aj
ρ =

{
i ∈ [n] : 2−j < |gi(xi)| ≤ 2−j+1,

|gi(xi)|∑i−1
t=1 |gi(xt)|+ λ

≥ ρ/2

}
,

dj := DE1(Ψ,S ×A, 2−j). (A.3)

Next we only consider the set Aj
ρ where |Aj

ρ| > dj. We denote
Aj

ρ = {a1, . . . , aA}, where A = |Aj
ρ| and {ai} keeps the same order

as {xi}. Next we do the following constructions. We maintain k =

b(A− 1)/djc number of queues Q1, . . . , Qk, all of them initialized
as emptysets. We put a1 into Q1. For ai, i ≥ 2, we put ai into
Ql, where Ql is the first queue where ai is 2−j-independent of all
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elements in Ql. Let imax be the smallest i when we can not put
ai into any existing queue.

We claim that imax indeed exists, i.e., our construction will stop
before we put all elements in Aj

ρ into Q1, . . . , Qk. In fact, note the
fact that the length of each Ql is always no more than dj, which
is due to the fact that any 2−j-independent sequence’s length is
at most dj. Meanwhile, since we only have k = b(A−1)/djc, then
the amount of elements in Q1 ∪ · · · ∪ Qk will be upper bounded
by k · dj < A. That suggests at least one element in Aj

ρ is not
contained by Q1 ∪ · · · ∪Qk, i.e., imax exists.

By the definition of imax, we know that aimax is 2−j-dependent
to each Ql. Next we give a bound of A. First, note
imax−1∑
t=1

|gimax(xt)| ≥
∑

t∈Q1∪···∪Qk

|gimax(at)| =
k∑

l=1

∑
t∈Ql

|gimax(at)| > k · 2−j,

(A.4)
where the first inequality holds since Ql are the elements that
appear before aimax, the second one holds due to the following
induction of Eluder dimension: since aimax is 2−j-dependent to
Ql, then we have

∀g ∈ Ψ,
∑
t∈Ql

|g(at)| ≤ 2−j ⇒ |g(aimax)| ≤ 2−j. (A.5)

Therefore, given the fact |gimax(aimax)| > 2−j (recall the definition
of Aj

ρ), we must have
∑

t∈Ql
|gimax(at)| > 2−j as well, which sug-

gests the second inequality of Equation A.4 holds. Second, we
have

imax−1∑
t=1

|gimax(xt)| ≤ 2/ρ · |gimax(aimax)| ≤ 4 · 2−j/ρ, (A.6)
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where both inequalities hold due to the definition of Aj
ρ. Com-

bining Equation A.4 and Equation A.6, we have

k < 4/ρ⇒ A ≤ 4dj/ρ+ dj ≤ 5dj/ρ. (A.7)

Therefore, we have that for all ρ, j, |Aj
ρ| ≤ 5dj/ρ.

Finally we prove Equation A.1. 1/(λn) ≤ ρ ≤ 1 and 1 ≤ j ≤
dlog(4λn)e = J . Denote

Aρ =

{
i ∈ [n] :

|gi(xi)|∑i−1
t=1 |gi(xt)|+ λ

≥ ρ/2

}
. (A.8)

Then it is easy to notice that |Aρ| =
∑

j |Aj
ρ| ≤ dlog(4λn)e·5dJ/ρ,

where we use the fact that the Eluder dimension dj is increasing.
Therefore, by the standard peeling technique, we have

n∑
i=1

min
{
1, sup

g∈Ψ

|g(xi)|∑i−1
t=1 |g(xt)|+ λ

}
=

∑
j∈[dlog(λn)e]

∑
i∈A2−j\A2−j+1

+
∑

j=dlog(λn)e

∑
i/∈A2−j+1

≤
∑

j∈[dlog(λn)e]

∑
i∈A2−j\A2−j+1

2−j−1 + n · 1/(λn)

≤
∑

j∈[dlog(λn)e]

∑
i∈A2−j

2−j−1 + n · 1/(λn)

≤ dlog(λn)e · dlog(4λn)e · 3dJ + λ−1,

which concludes our proof.
Next lemma gives a bound to bound the number of episodes

where the behavior along these episodes are “bad”. Intuitively
speaking, our lemma suggests we only have limited number of
bad episodes, therefore won’t affect the final performance of our
algorithm.
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Lemma A.1.2. Given λ > 1. There exists at most

13 log2(4λKH) ·DE1(Ψ,S ×A, 1/(8λKH)) (A.9)

number of k ∈ [K] satisfying the following claim

sup
g∈Ψ

λ+
∑k

k′=1

∑H
h′=1 |g(xk

′

h′)|
λ+

∑k−1
k′=1

∑H
h′=1 |g(xk

′

h′)|
> 4. (A.10)

Proof[Proof of Lemma A.1.2]
Note that

K∑
k=1

min
{
2, log sup

g∈Ψ

λ+
∑k

k′=1

∑H
h′=1 |g(xk

′

h′)|
λ+

∑k−1
k′=1

∑H
h′=1 |g(xk

′

h′)|

}

≤
K∑
k=1

min
{
2, log

H∏
h=1

sup
g∈Ψ

λ+
∑k−1

k′=1

∑H
h′=1 |g(xk

′

h′)|+
∑h

h′=1 |g(xkh′)|
λ+

∑k−1
k′=1

∑H
h′=1 |g(xk

′

h′)|+
∑h−1

h′=1 |g(xkh′)|

}

=
K∑
k=1

min
{
2,

H∑
h=1

log
(
1 + sup

g∈Ψ

|g(xkh)|
λ+

∑k−1
k′=1

∑H
h′=1 |g(xk

′

h′)|+
∑h−1

h′=1 |g(xkh′)|

)}

≤
K∑
k=1

H∑
h=1

min
{
2, sup

g∈Ψ

|g(xkh)|∑k−1
k′=1

∑H
h′=1 |g(xk

′

h′)|+
∑h−1

h′=1 |g(xkh′)|+ λ

}
,

≤ 2
K∑
k=1

H∑
h=1

min
{
1, sup

g∈Ψ

|g(xkh)|∑k−1
k′=1

∑H
h′=1 |g(xk

′

h′)|+
∑h−1

h′=1 |g(xkh′)|+ λ

}
≤ 24 log2(4λKH) ·DE1(Ψ,S ×A, 1/(8λKH)) + 2λ−1

≤ 26 log2(4λKH) ·DE1(Ψ,S ×A, 1/(8λKH)). (A.11)

where the first inequality holds since supg
∏

f(g) ≤
∏

supg f(g),
the second one holds since log(1 + x) ≤ x, the fourth one holds
due to Lemma A.1.1. Therefore, there are at most

26 log2(4λKH) ·DE1(Ψ,S ×A, 1/(8λKH))/2
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number of k satisfying

log sup
g∈Ψ

λ+
∑k

k′=1

∑H
h′=1 |g(xk

′

h′)|
λ+

∑k−1
k′=1

∑H
h′=1 |g(xk

′

h′)|
> 2,

which concludes the proof.
We next have the following lemma, which bounds the regret

by the Eluder dimension.

Lemma A.1.3 (Theorem 5.3, [208]). Let C := sup(s,a)∈S×A,f∈Ψ |f((s, a))|
be the envelope. For any sequences f (1), . . . , f (N) ⊆ Ψ, (s, a)(1), . . . , (s, a)(N) ⊆
S × A, let β be a constant such that for all n ∈ [N ] we have,∑n−1

i=1

∣∣f (n)((s, a)i)
∣∣ ≤ β. Then, for all n ∈ [N ], we have

n∑
t=1

∣∣∣f (t)((s, a)t)
∣∣∣ ≤ inf

0<ϵ≤1
{DE1(Ψ,S ×A, ϵ)(2C + β log(C/ϵ)) + nϵ} .

Given Lemma A.1.2 and Lemma Lemma A.1.3, we are able to
prove the following key lemma.

Lemma A.1.4 (New Eluder Pigeon Lemma). Let the event E be

E : ∀k ∈ [K],
k−1∑
i=1

H∑
h=1

H2(P̂ k(sih, a
i
h)||P ∗(sih, aih)) ≤ η. (A.12)

Then under event E , there exists a set K ∈ [K] such that

• We have |K| ≤ 13 log2(4ηKH) ·DE1(Ψ,S ×A, 1/(8ηKH)).

• We have∑
k∈[K]\K

H∑
h=1

H2
(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
)

≤ inf
0<ϵ≤1

{DE1(Ψ,S ×A, ϵ)(2 + 7η log(1/ϵ)) +KHϵ}

≤ DE1(Ψ,S ×A, 1/KH)(2 + 7η log(KH)) + 1 , (A.13)
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where the function class Ψ = {(s, a) 7→ H2(P ⋆(s, a) ‖ P (s, a)) :

P ∈ P}.

Proof[Proof of Lemma A.1.4] We interchangeably use n = kH+h

to denote the indices of skh, akh. We set f (n)((s, a)) in Lemma A.1.3
as H2(P k(s, a)||P ∗(s, a)).

First, we prove that the β in Lemma A.1.3 can be selected as
7η under event E . To show that, let K denote all the k stated in
Lemma A.1.2. Then for all k such that k + 1 /∈ K, h = 2, ..., H ,
let n = kH + h, we have
n−1∑
i=0

∣∣∣f (n)((s, a)i)
∣∣∣ ≤ kH+H∑

i=0

∣∣∣f (n)((s, a)i)
∣∣∣

=

(
λ+

kH∑
i=0

∣∣∣f (n)((s, a)i)
∣∣∣ ) ·∑kH+H

i=0

∣∣f (n)((s, a)i)
∣∣+ λ∑kH

i=0

∣∣f (n)((s, a)i)
∣∣+ λ

− λ

≤
(
λ+

kH∑
i=0

∣∣∣f (n)((s, a)i)
∣∣∣ ) · 4− λ

≤ 7η, (A.14)

where the second inequality holds due to Lemma A.1.2, the last
one holds due to the definition of E . Therefore, we prove our
lemma by the conclusion of Lemma A.1.3 with β = 7η.

A.1.3 Other Supporting Lemmas

Lemma A.1.5 (Simulation Lemma ([277])). We have

V π
0;P ⋆ − V π

0;P̂
≤

H−1∑
h=0

Es,a∼dπh

[∣∣∣Es′∼P ⋆(s,a)V
π
h+1;P̂

(s′)− Es′∼P̂ (s,a)V
π
h+1;P̂

(s′)
∣∣∣] .
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Lemma A.1.6 (Change of Variance Lemma (Lemma C.5 in
[278])).

H−1∑
h=0

Es,a∼dπh
[(
VP ⋆V π

h+1;P ⋆

)
(s, a)

]
= VaRπ.

Lemma A.1.7 (Generalization bounds of MLE for finite model
class (Theorem E.4 in [208])). Let X be the context/feature space
and Y be the label space, and we are given a dataset D = {(xi, yi)}i∈[n]
from a martingale process: for i = 1, 2, ..., n, sample xi ∼ Di(x1:i−1, y1:i−1)

and yi ∼ p(· | xi). Let f ⋆(x, y) = p(y | x) and we are given a real-
izable, i.e., f ⋆ ∈ F , function class F : X ×Y → ∆(R) of distribu-
tions. Suppose F is finite. Fix any δ ∈ (0, 1), set β = log(|F|/δ)
and define

F̂ =

{
f ∈ F :

n∑
i=1

log f(xi, yi) ≥ max
f̃∈F

n∑
i=1

log f̃(xi, yi)− 4β

}
.

Then w.p. at least 1− δ, the following holds:

(1) The true distribution is in the version space, i.e., f ⋆ ∈ F̂ .

(2) Any function in the version space is close to the ground truth
data-generating distribution, i.e., for all f ∈ F̂

n∑
i=1

Ex∼Di

[
H2(f(x, ·) ‖ f ⋆(x, ·))

]
≤ 22β.

Lemma A.1.8 (Generalization bounds of MLE for infinite model
class (Theorem E.5 in [208])). Let X be the context/feature space
and Y be the label space, and we are given a dataset D = {(xi, yi)}i∈[n]
from a martingale process: for i = 1, 2, ..., n, sample xi ∼ Di(x1:i−1, y1:i−1)

and yi ∼ p(· | xi). Let f ⋆(x, y) = p(y | x) and we are given
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a realizable, i.e., f ⋆ ∈ F , function class F : X × Y → ∆(R)
of distributions. Suppose F is finite. Fix any δ ∈ (0, 1), set
β = log(N[]((n|Y|)−1,F , ‖ · ‖∞)/δ) (where N[]((n|Y|)−1,F , ‖ · ‖∞)
is the bracketing number defined in Definition 3.2) and define

F̂ =

{
f ∈ F :

n∑
i=1

log f(xi, yi) ≥ max
f̃∈F

n∑
i=1

log f̃(xi, yi)− 7β

}
.

Then w.p. at least 1− δ, the following holds:

(1) The true distribution is in the version space, i.e., f ⋆ ∈ F̂ .

(2) Any function in the version space is close to the ground truth
data-generating distribution, i.e., for all f ∈ F̂

n∑
i=1

Ex∼Di

[
H2(f(x, ·) ‖ f ⋆(x, ·))

]
≤ 28β.

Lemma A.1.9 (Recursion Lemma). Let G > 0 be a positive con-
stant, a < G/2 is also a positive constant, and let {Cm}

N=dlog2(KH
G )e

m=0

be a sequence of positive real numbers satisfying:

[1] Cm ≤ 2mG+
√
aCm+1 + a for all m ≥ 0,

[2] Cm ≤ KH for all m ≥ 0, where K > 0 and H > 0 are positive
constants.

Then, it holds that:
C0 ≤ 4G.

Proof[Proof of Lemma A.1.9] We will prove by induction that
for all m ≥ 0,

Cm ≤ 2m+2G.
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Then, for m = 0, this would immediately show C0 ≤ 4G.
1. The base case m = N :
Since N = dlog2(KH

G )e, it is obvious that 2N+2G ≥ KH. Thus,
CN ≤ KH ≤ 2N+2G, the inequality holds for m = N .

2. The induction step:
Assume that for some m ≥ 0, for Cm+1, we have:

Cm+1 ≤ 2m+1+2G = 2m+3G.

Then, we have

Cm ≤ 2mG+
√

aCm+1 + a

≤ 2mG+
√
a2m+3G+ a

≤ 2mG+

√
G

2
· 2m+3G+

G

2

= G · (2m + 2m/2+1 + 2−1)

≤ G · (2m + 2m+1 + 2m)

= 2m+2G . (A.15)

Therefore, by induction, we have for all m ≥ 0,

Cm ≤ 2m+2G.

And the proof follows by setting m = 0.

A.1.4 Detailed Proofs for the online setting in Section 3.3

A.1.5 Proof of Theorem 3.3.2

The following is the full proof of Theorem 3.3.2.
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For notational simplicity, throughout this whole section, we
denote

A :=
∑

k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]

B :=
∑

k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1

)
(skh, a

k
h)
]
,

Cm :=
∑

k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆(V πk

h+1;P̂k − V πk

h+1)
2m
)
(skh, a

k
h)
]

G :=

√√√√ ∑
k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]
·DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

+ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

Ikh := Es′∼P ∗(skh,a
k
h)
V πk

h+1;P̂k(s
′)− V πk

h+1;P̂k(s
k
h+1) (A.16)

We use I{·} to denote the indicator function. We define the
following events which we will later show that they happen with
high probability.

E1 := {∀k ∈ [K − 1] : P ⋆ ∈ P̂k, and
k−1∑
i=0

H−1∑
h=0

H2(P ⋆(sih, a
i
h)||P̂ k(sih, a

i
h)) ≤ 22 log(K |P| /δ).} ,

(A.17)

E2 :=
{ ∑

k∈[K−1]\K

H−1∑
h=0

Ikh ≲

√√√√ ∑
k∈[K−1]\K

H−1∑
h=0

(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h) log(1/δ) + log(1/δ)

}
,

(A.18)

E3 := E1 ∩ {∀m ∈ [0, dlog2(
KH

G
)e] : Cm ≲ 2mG+

√
log(1/δ) · Cm+1 + log(1/δ)} ,

(A.19)

E4 := {
K−1∑
k=0

H−1∑
h=0

[(
VP ⋆V πk

h+1

)
(skh, a

k
h)
]
≲

K−1∑
k=0

VaRπk + log(1/δ)} , (A.20)

E5 := {
K−1∑
k=0

H∑
h=1

r(skh, a
k
h)−

K−1∑
k=0

V πk

0;P ∗ ≲

√√√√K−1∑
k=0

VaRπk log(1/δ) + log(1/δ)} , (A.21)

E := E2 ∩ E3 ∩ E4 ∩ E5 . (A.22)

First, by the realizability assumption, the standard generaliza-
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tion bound for MLE (Lemma A.1.7) with simply setting Di to be
the delta distribution on the realized (skh, a

k
h) pairs, and a union

bound over K episodes, we have that w.p. at least 1− δ, for any
k ∈ [0, K − 1]:

(1) P ⋆ ∈ P̂k;

(2)
k−1∑
i=0

H−1∑
h=0

H2(P ⋆(sih, a
i
h)||P̂ k(sih, a

i
h)) ≤ 22 log(K |P| /δ).

(A.23)

This directly indicates that

P (I{E1}) ≥ 1− δ . (A.24)

Under event E1, with the realizability in above (1), and by the
optimistic algorithm design (πk, P̂ k) ← argmaxπ∈Π,P∈P̂k V π

0;P (s0),
for any k ∈ [0, K − 1], we have the following optimism guarantee

V ⋆
0;P ⋆ ≤ max

π∈Π,P∈P̂k

V π
0;P = V πk

0;P̂ k .

Then, under event E1, we use Lemma A.1.4 and Equation A.23
to get the following:

There exists a set K ⊆ [K − 1] such that

• |K| ≤ 13 log2(88 log(K |P| /δ)KH)·DE1(Ψ,S×A, 1/(176 log(K |P| /δ)KH))

• And∑
k∈[K−1]\K

H−1∑
h=0

H2
(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
)

≤ DE1(Ψ,S ×A, 1/KH) · (2 + 154 log(K |P| /δ) log(KH)) + 1

≲ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH) . (A.25)
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We upper bound the regret with optimism, and by dividing k ∈
[K − 1] into K and [K − 1] \ K with the assumption that the
trajectory-wise cumulative reward is normalized in [0,1], as follows

K−1∑
k=0

V ⋆
0;P ⋆ −

K−1∑
k=0

H∑
h=1

r(skh, a
k
h)

≤ |K|+
∑

k∈[K−1]\K

(
V πk

0;P̂ k −
H−1∑
h=0

r(skh, a
k
h)

)
≲ log2(log(K |P| /δ)KH) ·DE1(Ψ,S ×A, 1/(log(K |P| /δ)KH))

+
∑

k∈[K−1]\K

(
V πk

0;P̂ k −
H−1∑
h=0

r(skh, a
k
h)

)
. (A.26)

We then do the following decomposition. Note that for any k ∈
[K − 1], policy πk is deterministic. We have that for any k ∈
[K − 1]

V πk

0;P̂ k(s
k
0)−

H−1∑
h=0

r(skh, a
k
h)

= Qπk

0;P̂ k(s
k
0, a

k
0)−

H−1∑
h=0

r(skh, a
k
h)

= r(sk0, a
k
0) + Es′∼P̂ k(sk0 ,a

k
0)
V πk

1;P̂ k(s
′)−

H−1∑
h=0

r(skh, a
k
h)

= Es′∼P̂ k(sk0 ,a
k
0)
V πk

1;P̂ k(s
′)−

H∑
h=1

r(skh, a
k
h)

= Es′∼P ∗(sk0 ,a
k
0)
V πk

1;P̂ k(s
′)−

H∑
h=1

r(skh, a
k
h) + Es′∼P̂ k(sk0 ,a

k
0)
V πk

1;P̂ k(s
′)− Es′∼P ∗(sk0 ,a

k
0)
V πk

1;P̂ k(s
′)
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= V πk

1;P̂ k(s
k
1)−

H−1∑
h=1

r(skh, a
k
h) + Es′∼P ∗(sk0 ,a

k
0)
V πk

1;P̂ k(s
′)− V πk

1;P̂ k(s
k
1)︸ ︷︷ ︸

Ik0

+ Es′∼P̂ k(sk0 ,a
k
0)
V πk

1;P̂ k(s
′)− Es′∼P ∗(sk0 ,a

k
0)
V πk

1;P̂ k(s
′) ,

where we use the Bellman equation for several times.
Then, by doing this recursively, we can get for any k ∈ [K−1]

V πk

0;P̂ k(s
k
h)−

H−1∑
h=0

r(skh, a
k
h)

≤
H−1∑
h=0

Ikh +
H−1∑
h=0

∣∣∣Es′∼P̂ k(skh,a
k
h)
V πk

h+1;P̂ k(s
′)− Es′∼P ∗(skh,a

k
h)
V πk

h+1;P̂ k(s
′)
∣∣∣

(A.27)

Therefore,∑
k∈[K−1]\K

(V πk

0;P̂ k(s
k
h)−

H−1∑
h=0

r(skh, a
k
h))

≤
∑

k∈[K−1]\K

H−1∑
h=0

Ikh +
∑

k∈[K−1]\K

H−1∑
h=0

∣∣∣Es′∼P̂ k(skh,a
k
h)
V πk

h+1;P̂ k(s
′)− Es′∼P ∗(skh,a

k
h)
V πk

h+1;P̂ k(s
′)
∣∣∣

(A.28)

Next we bound
∑

k∈[K−1]\K
∑H−1

h=0 Ikh . Note that by Azuma Bern-
stein’s inequality, with probability at least 1− δ

∑
k∈[K−1]\K

H−1∑
h=0

Ikh ≤

√√√√2
∑

k∈[K−1]\K

H−1∑
h=0

(
VP ⋆V πk

h+1;P̂ k

)
(skh, a

k
h) log(1/δ) +

2

3
log(1/δ)

(A.29)

This directly indicates that

P (I{E2}) ≥ 1− δ . (A.30)
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Then, we propose the following lemma.
Lemma A.1.10 (Bound of sum of mean value differences for
online RL). Under event E1, we have
∑

k∈[K−1]\K

H−1∑
h=0

∣∣∣Es′∼P̂k(skh,a
k
h)
V πk

h+1;P̂k(s
′)− Es′∼P ∗(skh,a

k
h)
V πk

h+1;P̂k(s
′)
∣∣∣

≲

√√√√ ∑
k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]
·DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

+ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH).

Proof [Proof of Lemma A.1.10] Under event E1, we have
∑

k∈[K−1]\K

H−1∑
h=0

∣∣∣Es′∼P̂k(skh,a
k
h)
V πk

h+1;P̂k(s
′)− Es′∼P ∗(skh,a

k
h)
V πk

h+1;P̂k(s
′)
∣∣∣

≤ 4
∑

k∈[K−1]\K

H−1∑
h=0

[√(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)D△

(
V πk

h+1;P̂k

(
s′ ∼ P ⋆(skh, a

k
h)
)
‖ V πk

h+1;P̂k
(s′ ∼ P̂ k

(
skh, a

k
h)
))]

+ 5
∑

k∈[K−1]\K

H−1∑
h=0

[
D△

(
V πk

h+1;P̂k

(
s′ ∼ P ⋆(skh, a

k
h)
)
‖ V πk

h+1;P̂k(s
′ ∼ P̂ k

(
skh, a

k
h)
))]

≤ 8
∑

k∈[K−1]\K

H−1∑
h=0

[√(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)H2

(
V πk

h+1;P̂k

(
s′ ∼ P ⋆(skh, a

k
h)
)
‖ V πk

h+1;P̂k
(s′ ∼ P̂ k

(
skh, a

k
h)
))]

+ 20
∑

k∈[K−1]\K

H−1∑
h=0

[
H2
(
V πk

h+1;P̂k

(
s′ ∼ P ⋆(skh, a

k
h)
)
‖ V πk

h+1;P̂k(s
′ ∼ P̂ k

(
skh, a

k
h)
))]

≤ 8
∑

k∈[K−1]\K

H−1∑
h=0

[√(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)H2

(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
)]

+ 20
∑

k∈[K−1]\K

H−1∑
h=0

[
H2
(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
)]

≤ 8

√√√√ ∑
k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]
·

∑
k∈[K−1]\K

H−1∑
h=0

[
H2
(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
)]

+ 20
∑

k∈[K−1]\K

H−1∑
h=0

[
H2
(
P ⋆(skh, a

k
h) ‖ P̂ k

(
skh, a

k
h)
)]

≲

√√√√ ∑
k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]
·DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)
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+ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH) , (A.31)

where in the first inequality, we use Lemma 3.2.1 to bound the
difference of two means Es′∼P ⋆(skh,a

k
h)
V πk

h+1;P̂ k
(s′)−Es′∼P̂ k(skh,a

k
h)
V π∗

h+1;P̂ k
(s′)

using variances and the triangle discrimination; in the second in-
equality we use the fact that that triangle discrimination is equiv-
alent to squared Hellinger distance, i.e., D4 ≤ 4H2; the third in-
equality is via data processing inequality on the squared Hellinger
distance; the fourth inequality is by the Cauchy–Schwarz inequal-
ity; the last inequality holds under E1 by Equation A.25.

The next lemma shows that the event E3 happens with high
probability.

Lemma A.1.11 (Recursion Event Lemma). Event E3 happens
with high probability. Specifically, we have

P (I{E3}) ≥ 1− (1 + dlog2(
KH

G
)e)δ. (A.32)

Proof[Proof of Lemma A.1.11] Let ∆πk

h+1 := V πk

h+1;P̂ k
−V πk

h+1. First,
under event E1, with happens with probability at least 1 − δ by
Equation A.24, and also note that πk is deterministic for any
k ∈ [K − 1], we can prove the following

∑
k∈[K−1]\K

H−1∑
h=0

[∣∣∣(∆πk

h )(skh)−
(
P ⋆∆πk

h+1

)
(skh, a

k
h)
∣∣∣] (A.33)

=
∑

k∈[K−1]\K

H−1∑
h=0

[∣∣∣(V πk

h;P̂k)(s
k
h)−

(
P ⋆V πk

h+1;P̂k

)
(skh, a

k
h)−

(
(V πk

h )(skh)−
(
P ⋆V πk

h+1

)
(skh, a

k
h)
)∣∣∣]

=
∑

k∈[K−1]\K

H−1∑
h=0

[∣∣∣r(skh, akh) + (P̂ kV πk

h+1;P̂k

)
(skh, a

k
h)−

(
P ⋆V πk

h+1;P̂k

)
(skh, a

k
h)− r(skh, a

k
h)
∣∣∣]

=
∑

k∈[K−1]\K

H−1∑
h=0

[∣∣∣(P̂ kV πk

h+1;P̂k

)
(skh, a

k
h)−

(
P ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
∣∣∣]



A.1. APPENDIX FOR CHAPTER 3 201

=
∑

k∈[K−1]\K

H−1∑
h=0

[∣∣∣Es′∼P ⋆(skh,a
k
h)

[
V πk

h+1;P̂k(s
′)
]
− E

s′∼P̂k(skh,a
k
h)

[
V πk

h+1;P̂k(s
′)
]∣∣∣]

≲

√√√√ ∑
k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]
·DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

+ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

= G (A.34)

where the first equality is by the definition of ∆πk

h+1, the in-
equality holds under E1 by Lemma A.1.10, and the last equality
is by definition of A and G.

Under event E1, with probability at least 1− dlog2(KH
G )eδ, for

any m ∈ [0, dlog2(KH
G )e]

Cm =
∑

k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆(V πk

h+1;P̂k − V πk

h+1)
2m
)
(skh, a

k
h)
]

=
∑

k∈[K−1]\K

H−1∑
h=0

[(
P ⋆(∆πk

h+1)
2m+1)

(skh, a
k
h)−

(
(P ⋆(∆πk

h+1)
2m)(skh, a

k
h)
)2]

=
∑

k∈[K−1]\K

H−1∑
h=0

[
(∆πk

h+1)
2m+1

(skh+1)
]
−

∑
k∈[K−1]\K

H−1∑
h=0

[(
(P ⋆(∆πk

h+1)
2m)(skh, a

k
h)
)2]

+
∑

k∈[K−1]\K

H−1∑
h=0

(
Es∼P ∗(skh,a

k
h)

[
(∆πk

h+1)
2m+1

(s)
]
− (∆πk

h+1)
2m+1

(skh+1)
)

≤
∑

k∈[K−1]\K

H−1∑
h=0

[
(∆πk

h )2
m+1

(skh)−
(
(P ⋆(∆πk

h+1)
2m)(skh, a

k
h)
)2]

+
∑

k∈[K−1]\K

H−1∑
h=0

(
Es∼P ∗(skh,a

k
h)

[
(∆πk

h+1)
2m+1

(s)
]
− (∆πk

h+1)
2m+1

(skh)
)

≲
∑

k∈[K−1]\K

H−1∑
h=0

[
(∆πk

h )2
m+1

(skh)−
(
(P ⋆(∆πk

h+1)
2m)(skh, a

k
h)
)2]

+ log(1/δ)

+

√√√√ ∑
k∈[K−1]\K

H−1∑
h=0

VP ∗

(
(V πk

h+1;P̂k
− V πk

h+1)
2m+1

)
(skh, a

k
h) log(1/δ)

=
∑

k∈[K−1]\K

H−1∑
h=0

[(
(∆πk

h )2
m
(skh) + (P ⋆(∆πk

h+1)
2m)(skh, a

k
h)
)
·
(
(∆πk

h )2
m
(skh)− (P ⋆(∆πk

h+1)
2m)(skh, a

k
h)
)]
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+
√

log(1/δ) · Cm+1 + log(1/δ)

=
∑

k∈[K−1]\K

H−1∑
h=0

[(
(∆πk

h )2
m
(skh) + (P ⋆(∆πk

h+1)
2m)(skh, a

k
h)
)
·
(
(∆πk

h )2
m
(skh)− (P ⋆((∆πk

h+1)
2)2

m−1
)(skh, a

k
h)
)]

+
√

log(1/δ) · Cm+1 + log(1/δ)

≤
∑

k∈[K−1]\K

H−1∑
h=0

[(
(∆πk

h )2
m
(skh) + (P ⋆(∆πk

h+1)
2m)(skh, a

k
h)
)
·
(
(∆πk

h )2
m
(skh)− ((P ⋆(∆πk

h+1)
2)(skh, a

k
h))

2m−1
)]

+
√

log(1/δ) · Cm+1 + log(1/δ)

≤ 2m
∑

k∈[K−1]\K

H−1∑
h=0

[∣∣∣(∆πk

h )2(skh)− ((P ⋆∆πk

h+1)(s
k
h, a

k
h))

2
∣∣∣]+√log(1/δ) · Cm+1 + log(1/δ)

= 2m
∑

k∈[K−1]\K

H−1∑
h=0

[∣∣∣((∆πk

h )(skh) + (P ⋆∆πk

h+1)(s
k
h, a

k
h)
)
·
(
(∆πk

h )(skh)− (P ⋆∆πk

h+1)(s
k
h, a

k
h)
)∣∣∣]

+
√

log(1/δ) · Cm+1 + log(1/δ)

≤ 2 · 2m
∑

k∈[K−1]\K

H−1∑
h=0

[∣∣∣(∆πk

h )(skh)−
(
P ⋆∆πk

h+1

)
(skh, a

k
h)
∣∣∣]+√log(1/δ) · Cm+1 + log(1/δ)

≲ 2mG+
√

log(1/δ) · Cm+1 + log(1/δ) , (A.35)

where in the first inequality we change the index, the sec-
ond inequality holds with probability at least 1 − δ by Azuma
Bernstain’s inequality, the third inequality holds because that
E[X2m−1

] ≥ (E[X])2
m−1 for m ≥ 1 and X ≥ 0, the fourth in-

equality holds by keep using a2 − b2 = (a + b)(a − b), then with
E[X2] ≥ E[X]2, and the assumption that the trajectory-wise total
reward is normalized in [0, 1], the last inequality holds under E1 by
Equation A.34, and we take a union bound to get this hold for all
m ∈ [0, dlog2(KH

G )e] with probability at least 1−dlog2(KH
G )eδ (be-

cause for each m ∈ [0, dlog2(KH
G )e] we need to apply the Azuma

Bernstain’s inequality once).
The above reasoning directly implies that

P (I{E3}) ≥ 1− (1 + dlog2(
KH

G
)e)δ. (A.36)
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Under the event E3, we prove the following lemma to bound∑
k∈[K−1]\K

∑H−1
h=0

[(
VP ⋆V πk

h+1;P̂ k

)
(skh, a

k
h)
]
.

Lemma A.1.12 (Variance Conversion Lemma for online RL).
Under event E3, we have
∑

k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]

≤ O
( ∑

k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1

)
(skh, a

k
h)
]
+ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

)
.

Proof[Proof of Lemma A.1.12] Under E3, we have for any m ∈
[0, dlog2(KH

G )e]

Cm ≲ 2mG+
√

log(1/δ) · Cm+1 + log(1/δ) . (A.37)

Then, by Lemma A.1.9, we have

C0 ≲ G . (A.38)

Also note that we have A ≤ 2B+2C0 since VP ⋆(a+b) ≤ 2VP ⋆(a)+

2VP ⋆(b). Therefore, we have

A ≤ 2B + 2C0

≲ B +G

= B +
√
A ·DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

+DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH) (A.39)

Then, with the fact that x ≤ 2a+ b2 if x ≤ a+ b
√
x, we have

A ≤ O

(
B +DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

)
,

(A.40)
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which is∑
k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]

≤ O

( ∑
k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1

)
(skh, a

k
h)
]
+ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

)
(A.41)

By the same reasoning in Lemma 26 of [279], we have that
with probability at least 1− δ∑
k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1

)
(skh, a

k
h)
]
≤

K−1∑
k=0

H−1∑
h=0

[(
VP ⋆V πk

h+1

)
(skh, a

k
h)
]

≤ O(
K−1∑
k=0

VaRπk + log(1/δ)) .

(A.42)
This indicates that

P (I{E4}) ≥ 1− δ . (A.43)

We can use the Azuma Bernstain’s inequality to get that with
probability at least 1− δ:
K−1∑
k=0

H∑
h=1

r(skh, a
k
h)−

K−1∑
k=0

V πk

0;P ∗ ≲

√√√√K−1∑
k=0

VaRπk log(1/δ) + log(1/δ) .

(A.44)
This indicates that

P (I{E5}) ≥ 1− δ . (A.45)

Then, together with Lemma A.1.11, Equation A.24 and Equa-
tion A.30, we have

P (I{E}) ≥ 1− (5 + dlog2(
KH

G
)e)δ ≥ 1− 5KHδ . (A.46)
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Finally, under event E , with all the things above (Equation A.26,
Equation A.28, Equation A.29,Lemma A.1.10, Lemma A.1.12),
we have
K−1∑
k=0

V ⋆
0;P ⋆ −

K−1∑
k=0

V πk

0;P ∗

=

K−1∑
k=0

V ⋆
0;P ⋆ −

K−1∑
k=0

H∑
h=1

r(skh, a
k
h) +

K−1∑
k=0

H∑
h=1

r(skh, a
k
h)−

K−1∑
k=0

V πk

0;P ∗

≲ |K|+
∑

k∈[K−1]\K

(
V πk

0;P̂k −
H−1∑
h=0

r(skh, a
k
h)

)
+

√√√√K−1∑
k=0

VaRπk log(1/δ) + log(1/δ)

≲ log2(log(K |P| /δ)KH) ·DE1(Ψ,S ×A, 1/(log(K |P| /δ)KH)) +
∑

k∈[K−1]\K

(
V πk

0;P̂k −
H−1∑
h=0

r(skh, a
k
h)

)

+

√√√√K−1∑
k=0

VaRπk log(1/δ) + log(1/δ)

≲ log2(log(K |P| /δ)KH) ·DE1(Ψ,S ×A, 1/(log(K |P| /δ)KH)) + log(1/δ)

+

√√√√ ∑
k∈[K−1]\K

H−1∑
h=0

(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h) log(1/δ) +

√√√√K−1∑
k=0

VaRπk log(1/δ)

+
∑

k∈[K−1]\K

H−1∑
h=0

∣∣∣Es′∼P̂k(sk1 ,A
k)
V πk

1;P̂k(s
′)− Es′∼P ∗(sk1 ,A

k)V
πk

1;P̂k(s
′)
∣∣∣

≲ log2(log(K |P| /δ)KH) ·DE1(Ψ,S ×A, 1/(log(K |P| /δ)KH)) +

√√√√K−1∑
k=0

VaRπk log(1/δ) + log(1/δ)

+

√√√√(
∑

k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1

)
(skh, a

k
h)
]
+ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)) · log(1/δ)

+

√√√√ ∑
k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1;P̂k

)
(skh, a

k
h)
]
·DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

≲ log2(log(K |P| /δ)KH) ·DE1(Ψ,S ×A, 1/(log(K |P| /δ)KH)) +

√√√√K−1∑
k=0

VaRπk log(1/δ) + log(1/δ)

+

√√√√(
∑

k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1

)
(skh, a

k
h)
]
+ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)) · log(1/δ)
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+

√√√√(
∑

k∈[K−1]\K

H−1∑
h=0

[(
VP ⋆V πk

h+1

)
(skh, a

k
h)
]
+ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH))

×
√

DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH))

≲ log2(log(K |P| /δ)KH) ·DE1(Ψ,S ×A, 1/(log(K |P| /δ)KH)) +

√√√√K−1∑
k=0

VaRπk log(1/δ) + log(1/δ)

+

√√√√(
K−1∑
k=0

VaRπk + log(1/δ) + DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)) · log(1/δ)

+

√√√√(K−1∑
k=0

VaRπk + log
(
1

δ

)
+ DE1

(
Ψ,S ×A, 1

KH

)
· log

(
K |P|
δ

)
log(KH)

)

×

√
DE1

(
Ψ,S ×A, 1

KH

)
log
(
K |P|
δ

)
log(KH)

≤ O
(√√√√K−1∑

k=0

VaRπk ·DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)

+ DE1(Ψ,S ×A, 1/KH) · log(K |P| /δ) log(KH)
)
. (A.47)

The final result follows by replacing δ to be δ/(5KH) to make
the event E happen with probability at least 1− δ.

A.1.6 Proof of Corollary 3.2

Proof[Proof of Corollary 3.2] By Lemma A.1.6, we have

VaRπk =
H−1∑
h=0

E
s,a∼dπkh

[(
VP ⋆V πk

h+1

)
(s, a)

]
(A.48)

Therefore, when P ⋆ is deterministic, the E
s,a∼dπkh

[(
VP ⋆V πk

h+1

)
(s, a)

]
terms are all 0 for any k ∈ [K − 1] and h ∈ [H − 1], and then the∑K−1

k=0 VaRπk term in the higher order term in Theorem 3.3.2 is
0.



A.1. APPENDIX FOR CHAPTER 3 207

A.1.7 Proof of Corollary 3.3

Proof[Proof of Corollary 3.3] We follow the MLE guarantee for
the infinite model class in Lemma A.1.8 and the same proof steps
in the proof of Theorem 3.3.2 in Appendix A.1.5.

A.1.8 Detailed Proofs for the Offline RL setting in Sec-
tion 3.4

A.1.9 Proof of Theorem 3.4.1

The following is the full proof of Theorem 3.4.1.
Proof[Proof of Theorem 3.4.1] First, by the realizability assump-
tion, the standard generalization bound for MLE (Lemma A.1.7)
with simply setting Di to be the delta distribution on the (skh, akh)
pairs in the offline dataset D, we have that w.p. at least 1− δ :

(1) P ⋆ ∈ P̂ ;

(2)

1

K

K∑
k=1

H−1∑
h=0

H2(P ⋆(skh, a
k
h)||P̂ (skh, a

k
h)) ≤

22 log(|P| /δ)
K

. (A.49)

Then, with the above realizability in (1), and by the pes-
simistic algorithm design π̂ ← argmaxπ∈ΠminP∈P̂ V π

0;P (s0), P̂ ←
argminP∈P̂ V π̂

0;P (s0), we have that for any π⋆ ∈ Π

V π⋆

0;P ⋆ − V π̂
0;P ⋆ = V π⋆

0;P ⋆ − V π⋆

0;P̂
+ V π⋆

0;P̂
− V π̂

0;P ⋆

≤ V π⋆

0;P ⋆ − V π⋆

0;P̂
+ V π̂

0;P̂
− V π̂

0;P ⋆

≤ V π⋆

0;P ⋆ − V π⋆

0;P̂
. (A.50)
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We can then bound V π⋆

0;P ⋆ − V π⋆

0;P̂
using the simulation lemma

(Lemma A.1.5):

V π⋆

0;P ⋆ − V π⋆

0;P̂
≤

H−1∑
h=0

Es,a∼dπ⋆h

[∣∣∣Es′∼P ⋆(s,a)V
π⋆

h+1;P̂
(s′)− Es′∼P̂ (s,a)V

π⋆

h+1;P̂
(s′)
∣∣∣] .

(A.51)

Then, we prove the following lemma to bound the RHS of Equa-
tion A.51.

Lemma A.1.13 (Bound of sum of mean value differences for
offline RL). With probability at least 1− δ, we have
H−1∑
h=0

Es,a∼dπ⋆h

[∣∣∣Es′∼P ⋆(s,a)V
π⋆

h+1;P̂
(s′)− Es′∼P̂ (s,a)V

π⋆

h+1;P̂
(s′)
∣∣∣]

≤ 8

√√√√H−1∑
h=0

Es,a∼dπ⋆h

[(
VP ⋆V π⋆

h+1;P̂

)
(s, a)

]
· 22C

π⋆ log(|P| /δ)
K

+
440Cπ⋆ log(|P| /δ)

K
.

Proof[Proof of Lemma A.1.13] We have
H−1∑
h=0

Es,a∼dπ
⋆

h

[∣∣∣Es′∼P ⋆(s,a)V
π⋆

h+1;P̂
(s′)− E

s′∼P̂ (s,a)
V π⋆

h+1;P̂
(s′)
∣∣∣]

≤ 4

H−1∑
h=0

Es,a∼dπ
⋆

h

[√(
VP ⋆V π⋆

h+1;P̂

)
(s, a)D△

(
V π⋆

h+1;P̂

(
s′ ∼ P ⋆(s, a)

)
‖ V π⋆

h+1;P̂
(s′ ∼ P̂

(
s, a)

))]

+ 5
H−1∑
h=0

Es,a∼dπ
⋆

h

[
D△

(
V π⋆

h+1;P̂

(
s′ ∼ P ⋆(s, a)

)
‖ V π⋆

h+1;P̂
(s′ ∼ P̂

(
s, a)

))]
≤ 8

H−1∑
h=0

Es,a∼dπ
⋆

h

[√(
VP ⋆V π⋆

h+1;P̂

)
(s, a)H2

(
V π⋆

h+1;P̂

(
s′ ∼ P ⋆(s, a)

)
‖ V π⋆

h+1;P̂
(s′ ∼ P̂

(
s, a)

))]

+ 20
H−1∑
h=0

Es,a∼dπ
⋆

h

[
H2
(
V π⋆

h+1;P̂

(
s′ ∼ P ⋆(s, a)

)
‖ V π⋆

h+1;P̂
(s′ ∼ P̂

(
s, a)

))]
≤ 8

H−1∑
h=0

Es,a∼dπ
⋆

h

[√(
VP ⋆V π⋆

h+1;P̂

)
(s, a)H2

(
P ⋆(s, a) ‖ P̂

(
s, a)

)]
+ 20

H−1∑
h=0

Es,a∼dπ
⋆

h

[
H2
(
P ⋆(s, a) ‖ P̂

(
s, a)

)]
(A.52)
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where in the first inequality, we use Lemma 3.2.1 to bound the
difference of two means Es′∼P ⋆(s,a)V

π⋆

h+1;P̂
(s′) − Es′∼P̂ (s,a)V

π∗

h+1;P̂
(s′)

using variances and the triangle discrimination; in the second in-
equality we use the fact that that triangle discrimination is equiv-
alent to squared Hellinger distance, i.e., D4 ≤ 4H2; the third in-
equality is via data processing inequality on the squared Hellinger
distance. Next, starting from Equation A.52, with probability at
least 1− δ, we have

8

H−1∑
h=0

Es,a∼dπ
⋆

h

[√(
VP ⋆V π⋆

h+1;P̂

)
(s, a)H2

(
P ⋆(s, a) ‖ P̂

(
s, a)

)]
+ 20

H−1∑
h=0

Es,a∼dπ
⋆

h

[
H2
(
P ⋆(s, a) ‖ P̂

(
s, a)

)]

≤ 8

√√√√H−1∑
h=0

Es,a∼dπ
⋆

h

[(
VP ⋆V π⋆

h+1;P̂

)
(s, a)

]
·
H−1∑
h=0

Es,a∼dπ
⋆

h

[
H2
(
P ⋆(s, a) ‖ P̂

(
s, a)

)]

+ 20

H−1∑
h=0

Es,a∼dπ
⋆

h

[
H2
(
P ⋆(s, a) ‖ P̂

(
s, a)

)]

≤ 8

√√√√H−1∑
h=0

Es,a∼dπ
⋆

h

[(
VP ⋆V π⋆

h+1;P̂

)
(s, a)

]
· Cπ⋆ 1

K

K∑
k=1

H−1∑
h=0

H2(P ⋆(skh, a
k
h)||P̂ (skh, a

k
h))

+ 20Cπ⋆ 1

K

K∑
k=1

H−1∑
h=0

H2(P ⋆(skh, a
k
h)||P̂ (skh, a

k
h))

≤ 8

√√√√H−1∑
h=0

Es,a∼dπ
⋆

h

[(
VP ⋆V π⋆

h+1;P̂

)
(s, a)

]
· 22C

π⋆ log(|P| /δ)
K

+
440Cπ⋆ log(|P| /δ)

K
,

(A.53)

where the first inequality is by the Cauchy–Schwarz inequality;
the second inequality is by the definition of single policy cover-
age (Definition 3.3); the last inequality holds with probability at
least 1− δ with Equation A.49. Substituting Equation A.53 into
Equation A.52 ends our proof.

We denote E as the event that Lemma A.1.13 holds. Under the
event E , we prove the following lemma to bound

∑H−1
h=0 Es,a∼dπ⋆h

[(
VP ⋆V π⋆

h+1;P̂

)
(s, a)

]
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with Õ(
∑H−1

h=0 Es,a∼dπ∗h

[(
VP ⋆V π∗

h+1

)
(s, a)

]
+ Cπ∗ log(|P| /δ)/K).

Lemma A.1.14 (Variance Conversion Lemma for offline RL).
Under event E , we have
H−1∑
h=0

Es,a∼dπ
⋆

h

[(
VP ⋆V π⋆

h+1;P̂

)
(s, a)

]
≤ O

(H−1∑
h=0

Es,a∼dπ
∗

h

[(
VP ⋆V π∗

h+1

)
(s, a)

]
+ Cπ∗ log(|P| /δ)

K

)
.

Proof[Proof of Lemma A.1.14] For notational simplicity, we de-
note A :=

∑H−1
h=0 Es,a∼dπ⋆h

[(
VP ⋆V π⋆

h+1;P̂

)
(s, a)

]
, and we denote

B :=
∑H−1

h=0 Es,a∼dπ⋆h

[(
VP ⋆V π⋆

h+1

)
(s, a)

]
,

C :=
∑H−1

h=0 Es,a∼dπ⋆h

[(
VP ⋆(V π⋆

h+1;P̂
− V π⋆

h+1)
)
(s, a)

]
, then we have

A ≤ 2B + 2C,

since VP ⋆(a+ b) ≤ 2VP ⋆(a) + 2VP ⋆(b).
Let ∆π⋆

h+1 := V π⋆

h+1;P̂
− V π⋆

h+1. Then, w.p. at least 1− δ, we have

C =
H−1∑
h=0

Es,a∼dπ⋆h

[(
P ⋆(∆π⋆

h+1)
2
)
(s, a)−

(
P ⋆∆π⋆

h+1

)2
(s, a)

]
=

H−1∑
h=0

Es∼dπ⋆h+1

[
(∆π⋆

h+1)
2(s)

]
−

H−1∑
h=0

Es,a∼dπ⋆h

[(
P ⋆∆π⋆

h+1

)2
(s, a)

]
≤

H−1∑
h=0

Es,a∼dπ⋆h

[
(∆π⋆

h )2(s)−
(
P ⋆∆π⋆

h+1

)2
(s, a)

]
=

H−1∑
h=0

Es,a∼dπ⋆h

[(
(∆π⋆

h )(s) +
(
P ⋆∆π⋆

h+1

)
(s, a)

)
·
(
(∆π⋆

h )(s)−
(
P ⋆∆π⋆

h+1

)
(s, a)

)]
,

(A.54)

where the first equality is by the definition of variance, the sec-
ond equality holds as dπ⋆

h is the occupancy measure also generated
under P ⋆, the first inequality is just changing the index, the third



A.1. APPENDIX FOR CHAPTER 3 211

equality holds as a2 − b2 = (a+ b) · (a− b). Starting from Equa-
tion A.54, we have

H−1∑
h=0

Es,a∼dπ⋆h

[(
(∆π⋆

h )(s) +
(
P ⋆∆π⋆

h+1

)
(s, a)

)
·
(
(∆π⋆

h )(s)−
(
P ⋆∆π⋆

h+1

)
(s, a)

)]
≤ 2

H−1∑
h=0

Es,a∼dπ⋆h

[∣∣(∆π⋆

h )(s)−
(
P ⋆∆π⋆

h+1

)
(s, a)

∣∣]
= 2

H−1∑
h=0

Es,a∼dπ⋆h

[∣∣∣(V π⋆

h;P̂
)(s)−

(
P ⋆V π⋆

h+1;P̂

)
(s, a)−

(
(V π⋆

h )(s)−
(
P ⋆V π⋆

h+1

)
(s, a)

)∣∣∣]
= 2

H−1∑
h=0

Es,a∼dπ⋆h

[∣∣∣r(s, a) + (P̂ V π⋆

h+1;P̂

)
(s, a)−

(
P ⋆V π⋆

h+1;P̂

)
(s, a)− r(s, a)

∣∣∣]
= 2

H−1∑
h=0

Es,a∼dπ⋆h

[∣∣∣(P̂ V π⋆

h+1;P̂

)
(s, a)−

(
P ⋆V π⋆

h+1;P̂

)
(s, a)

∣∣∣] , (A.55)

where the inequality holds as the value functions are all bounded
by 1 by the assumption that the total reward over any trajectory
is bounded by 1, the first equality is by the definition of ∆π⋆

h+1,
the second equality is because a is drawn from π⋆. Starting from
Equation A.55, we have

2
H−1∑
h=0

Es,a∼dπ⋆h

[∣∣∣(P̂ V π⋆

h+1;P̂

)
(s, a)−

(
P ⋆V π⋆

h+1;P̂

)
(s, a)

∣∣∣]
= 2

H−1∑
h=0

Es,a∼dπ⋆h

[∣∣∣Es′∼P ⋆(s,a)

[
V π⋆

h+1;P̂
(s′)
]
− Es′∼P̂ (·|s,a)

[
V π⋆

h+1;P̂
(s′)
]∣∣∣]

≤ 16

√√√√H−1∑
h=0

Es,a∼dπ⋆h

[(
VP ⋆V π⋆

h+1;P̂

)
(s, a)

]
· 22C

π⋆ log(|P| /δ)
K

+
880Cπ⋆ log(|P| /δ)

K

= 16

√
A · 22C

π⋆ log(|P| /δ)
K

+
880Cπ⋆ log(|P| /δ)

K
(A.56)
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where the inequality holds with probability at least 1 − δ by
Lemma A.1.13, and the second equality is by definition of A.

Then combining Equation A.54, Equation A.55 and Equa-
tion A.56, we obtain an upper bound for C, which suggests

A ≤ 2B + 2C

≤ 2B +
1760Cπ⋆ log(|P| /δ)

K
+ 32

√
22Cπ⋆ log(|P| /δ)

K
·
√
A.

Then, with the fact that x ≤ 2a+ b2 if x ≤ a+ b
√
x, we have

A ≤ 4B +
3520Cπ⋆ log(|P| /δ)

K
+

22528Cπ⋆ log(|P| /δ)
K

≤ O(B +
Cπ⋆ log(|P| /δ)

K
).

With the above lemmas, we can now prove the final results of
Theorem 3.4.1. We have that w.p. at least 1− δ

V π⋆

0;P ⋆ − V π̂
0;P ⋆ ≤ O

(√
A · C

π⋆ log(|P| /δ)
K

+
Cπ⋆ log(|P| /δ)

K

)
≤ O

(√
(B +

Cπ⋆ log(|P| /δ)
K

) · C
π⋆ log(|P| /δ)

K
+

Cπ⋆ log(|P| /δ)
K

)
≤ O

(√
B · C

π⋆ log(|P| /δ)
K

+

√
Cπ⋆ log(|P| /δ)

K
· C

π⋆ log(|P| /δ)
K

+
Cπ⋆ log(|P| /δ)

K

)
= O

(√√√√H−1∑
h=0

Es,a∼dπ
⋆

h

[(
VP ⋆V π⋆

h+1

)
(s, a)

]
· C

π⋆ log(|P| /δ)
K

+
Cπ⋆ log(|P| /δ)

K

)
(A.57)

= O
(√VaRπ⋆Cπ⋆ log(|P| /δ)

K
+

Cπ⋆ log(|P| /δ)
K

)
,

where in the last equation we use Lemma A.1.6, and VaRπ⋆ :=

E

[(∑H−1
h=0 r(sh, π

⋆(sh))− V π⋆

0

)2
]
.
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A.1.10 Proof of Corollary 3.4

Proof[Proof of Corollary 3.4] By Lemma A.1.6, we have

VaRπ∗ =
H−1∑
h=0

Es,a∼dπ∗h

[(
VP ⋆V π∗

h+1

)
(s, a)

]
(A.58)

Therefore, when P ⋆ is deterministic, the Es,a∼dπ∗h

[(
VP ⋆V π∗

h+1

)
(s, a)

]
terms are all 0 for any k ∈ [K − 1] and h ∈ [H − 1], and then the
VaRπ∗ term in the higher order term in Theorem 3.4.1 is 0.

A.1.11 Proof of Corollary 3.5

Proof[Proof of Corollary 3.5] This claim follows the proof of
Theorem 3.4.1, while we take a different choice of β that de-
pends on the bracketing number and follow the MLE guarantee
in Lemma A.1.8 for infinite model class.

A.1.12 Proof of the claim in Example 2

Proof Recall that in Definition 3.3, we have

Cπ∗

D := max
h,P∈P

Es,a∼dπ∗h H2 (P (s, a) ‖ P ⋆(s, a))

1/K
∑K

k=1H2
(
P (skh, a

k
h) ‖ P ⋆(skh, a

k
h)
) .

For each step h, define two distributions, ph, qh, where ph(s, a) =

dπ
∗
(s, a), qh(s, a) = 1

K

∑K
k=1 I{(s, a) = (skh, a

k
h)}, and we define
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f(s, a, P ) = H2(P (s, a) ‖ P ⋆(s, a)), then we have

Cπ∗

D = max
h,P∈P

Es,a∼phf(s, a, P )

Es,a∼qhf(s, a, P )

= max
h,P∈P

Es,a∼qh
ph(s,a)
qh(s,a)

f(s, a, P )

Es,a∼qhf(s, a, P )

≤ max
h,s,a

ph(s, a)

qh(s, a)

≤ max
h,s,a

1

qh(s, a)
. (A.59)

Note that for all h, {(skh, akh)}Kk=1 are i.i.d. samples drawn from
dπ

b

h , therefore, E[I{(skh, akh) = (s, a)}] = dπ
b

h (s, a). By Hoeffd-
ing’s inequality and with a union bound over s, a, h, and for
K ≥ 2 log( |S||A|H

δ )

ρ2min
, w.p. at least 1− δ, we have

qh(s, a) =
1

K

K∑
k=1

I{(skh, akh) = (s, a)}

≥ dπ
b

h (s, a)−

√
log( |S||A|Hδ )

2K

≥ dπ
b

h (s, a)

2
, (A.60)

where in the last inequality we use the assumption that dπb

h (s, a) ≥
ρmin, ∀s, a, h, which gives us K ≥ 2 log( |S||A|H

δ )

ρ2min
≥ maxs,a,h 2 log( |S||A|H

δ )

(dπ
b

h (s,a))2
,

so K ≥ 2 log( |S||A|H
δ )

(dπ
b

h (s,a))2
for any s, a, h.

Therefore, with K ≥ 2 log( |S||A|H
δ )

ρ2min
, we have that w.p. at least

1− δ

Cπ∗

D ≤ max
h,s,a

1

qh(s, a)
≤ max

h,s,a

2

dπ
b

h (s, a)
≤ 2

ρmin
. (A.61)
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A.2 Appendix for Chapter 4

We provide missing proofs and theoretical results of our paper in
the Appendix sections:

• In Appendix A.2.1, we provide the missing results of Section
4.3. We first provide the proof of Proposition 4.1, then we an-
alyze the suboptimality gap of the Pessimistic Value Iteration
(PEVI) ([91]) in the contextual linear MDP setting without
context information.

• In Appendix A.2.2, we provide the proofs of our main theorems
on the suboptimality bounds of PERM and PPPO in Section
4.4.

• In Appendix A.2.3, we state and prove the suboptimality bounds
we promised in Remarks 9 and 11, where we merge the sampled
contexts into m groups (m < n) to reduce the computational
complexity in practical settings.

• In Appendix A.2.4, we provide the proofs of results in Section
4.5 on linear MDPs. Namely, we provide proof of Theorem
4.5.1, proof of Corollary 4.1.

A.2.1 Results in Section 4.3

A.2.1.1 Proof of Proposition 4.1

Let D′ = {(xτcτ ,h, a
τ
cτ ,h

, rτcτ ,h)}
H,K
h=1,τ=1 denote the merged dataset,

where each trajectory belongs to a context cτ . For simplicity, let
Dc denote the collection of trajectories that belong to MDPMc.
Then each trajectory in D′ is generated by the following steps:
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• The experimenter randomly samples an environment c ∼ C.

• The experimenter collect a trajectory from the episodic MDP
Mc.

Then for any x′, r′, τ we have

PD′(rτcτ ,h = r′, xτcτ ,h+1 = x′|{(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1)

=
PD′(rτcτ ,h = r′, xτcτ ,h+1 = x′, {(xjcj ,h, a

j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1)

PD′({(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1)

=
∑
c∈C

PD′(rτcτ ,h = r′, xτcτ ,h+1 = x′|{(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 , cτ = c)q(c),

(A.62)

where

q(c′) :=
PD′({(xjcj ,h, a

j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 , cτ = c′)∑

c∈C PD′({(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 , cτ = c)

.

Next, we further have

(A.62)

=
∑
c∈C

Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)q(c)

=
∑
c∈C

Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)PD′(sh = xτcτ ,h, ah = aτcτ ,h, cτ = c)∑
c∈C PD′(sh = xτcτ ,h, ah = aτcτ ,h, cτ = c)

=
∑
c∈C

p(c) ·
Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)Pc(sh = xτcτ ,h, ah = aτcτ ,h)∑

c∈C p(c) · Pc(sh = xτcτ ,h, ah = aτcτ ,h)

= Ec∼C

Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)µc,h(x
τ
cτ ,h

, aτcτ ,h)

Ec∼Cµc,h(x
τ
cτ ,h

, aτcτ ,h)
,

where the first equality holds since for all trajectories τ satis-
fying cτ = c, they are compliant withMc, the second one holds
since all trajectories are independent of each other, the third and
fourth ones hold due to the definition of µc,h(·, ·).
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A.2.1.2 PEVI algorithm

Algorithm 14 [91] Pessimistic Value Iteration (PEVI)
Require: Dataset D = {(xτ

cτ ,h
, aτcτ ,h, r

τ
cτ ,h

)Hh=1}Kτ=1, confidence probability δ ∈
(0, 1).

1: Initialization: Set V̂H+1(·)← 0.
2: for step h = H,H − 1, . . . , 1 do
3: Set Λh ←

∑K
τ=1 ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λ · I.
4: Set ŵh ← Λ−1

h (
∑K

τ=1 ϕ(x
τ
h, a

τ
h) · (rτh + V̂h+1(x

τ
h+1))).

5: Set Γh(·, ·)← β(δ) · (ϕ(·, ·)⊤Λ−1
h ϕ(·, ·))1/2.

6: Set Q̂h(·, ·)← min{ϕ(·, ·)⊤ŵh − Γh(·, ·), H − h+ 1}+.
7: Set π̂h(· | ·)← argmaxπh

〈Q̂h(·, ·), πh(· | ·)〉A.
8: Set V̂h(·)← 〈Q̂h(·, ·), π̂h(· | ·)〉A.
9: end for

10: return πPEVI = {π̂h}Hh=1.

We analyze the suboptimality gap of the Pessimistic Value Iter-
ation (PEVI) ([91]) in the contextual linear MDP setting without
context information to demonstrate that by finding the optimal
policy for M̄ is not enough to find the policy that performs well
on MDPs with context information.
Pessimistic Value Iteration (PEVI). Let π∗ be the optimal
policy w.r.t. the average MDP M̄. We analyze the performance
of the Pessimistic Value Iteration (PEVI) [91] under the unknown
context information setting. The details of PEVI is in Algo.14.

Suppose that D̄ consists of K number of trajectories generated
i.i.d. following by a fixed behavior policy π̄. Then the following
theorem shows the suboptimality gap for Algo.14 does not con-
verge to 0 even when the data size grows to infinity.
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Theorem A.2.1. Assume that π̄ In Algo.6, we set

λ = 1, β(δ) = c′ · dH
√

log(4dHK/δ) , (A.63)

where c′ > 0 is a positive constant. Suppose we have K ≥ c̃ ·
d log(4dH/ξ), where c̃ > 0 is a sufficiently large positive constant
that depends on c. Then we have: w.p. at least 1 − δ, for the
output policy πPEVI of Algo.14,

sup
π

V π
M̄,1 − V πPEVI

M̄,1 ≤ c′′ · d3/2H2K−1/2
√

log(4dHK/δ), (A.64)

and the suboptimality gap satisfies

SubOpt(πPEVI) ≤ c′′ · d3/2H2K−1/2
√

log(4dHK/δ)

+ 2 sup
π
|V π
M̄,1(x1)− Ec∼CV

π
c,1(x1)| , (A.65)

where c′′ > 0 is a positive constant that only depends on c and c′.

Proof of Theorem A.2.1. First, we define the value function on
the average MDP M̄ as follows.

V
π
h(x) = Eπ,M̄

[ H∑
i=h

ri(si, ai)
∣∣ sh = x

]
. (A.66)

We then decompose the suboptimality gap as follows.

SubOpt(πPEVI)

= Ec∼C
[
V π∗

c,1 (x1)
]
− Ec∼C

[
V πPEVI

c,1 (x1)
]

= V
π∗

1 (x1)− V
πPEVI

1 (x1) +
(
Ec∼C

[
V π∗

c,1 (x1)
]
− V

π∗

1 (x1)
)

+
(
V

πPEVI

1 (x1)− Ec∼C
[
V πPEVI

c,1 (x1)
])

≤ V
π∗

1 (x1)− V
πPEVI

1 (x1) + 2 sup
π
|V π
M̄,1(x1)− Ec∼CV

π
c,1(x1)| .

(A.67)
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Then, applying Corollary 4.6 in [91], we can get that w.p. at
least 1− δ

V
π∗

1 (x1)−V
πPEVI

1 (x1) ≤ c′′ ·d3/2H2K−1/2
√

log(4dHK/δ) , (A.68)

which, together with Eq.(A.67) completes the proof.

Theorem A.2.1 shows that by adapting the standard pessimistic
offline RL algorithm over the offline dataset without context infor-
mation, the learned policy πPEVI converges to the optimal policy
π̄∗ over the average MDP M̄.

A.2.2 Proof of Theorems in Section 4.4

A.2.2.1 Proof of Theorem 4.4.1

We define the model estimation error as

ιπi,h(x, a) = (Bi,hV̂
π
i,h+1)(x, a)− Q̂π

i,h(x, a). (A.69)

And we define the following condition∣∣(B̂i,hV̂
π
i,h+1)(x, a)− (Bi,hV̂

π
i,h+1)(x, a)

∣∣ ≤ Γi,h(x, a)

for all i ∈ [n], π ∈ Π, (x, a) ∈ S ×A, h ∈ [H] . (A.70)

We introduce the following lemma to bound the model estimation
error.

Lemma A.2.2 (Model estimation error bound (Adapted from
Lemma 5.1 in [91]). Under the condition of Eq.(A.70), we have

0 ≤ ιπi,h(x, a) ≤ 2Γi,h(x, a), for all i ∈ [n], π ∈ Π, (x, a) ∈ S×A, h ∈ [H].

(A.71)
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Then, we prove the following lemma for pessimism in V values.

Lemma A.2.3 (Pessimism for Estimated V Values). Under the
condition of Eq.(A.70), for any i ∈ [n], π ∈ Π, x ∈ S, we have

V π
i,h(x) ≥ V̂ π

i,h(x) . (A.72)

Proof. For any i ∈ [n], π ∈ Π, x ∈ S, a ∈ A, we have

Qπ
i,h(x, a)− Q̂π

i,h(x, a)

≥ ri,h(x, a) + (Bi,hV
π
i,h+1)(x, a)−

(
ri,h(s, a) + (B̂i,hV̂

π
i,h+1)(x, a)− Γi,h(x, a)

)
= (Bi,hV

π
i,h+1)(x, a)− (Bi,hV̂

π
i,h+1)(x, a) + Γi,h(x, a)

−
(
(B̂i,hV̂

π
i,h+1)(x, a)− Bi,hV̂

π
i,h+1)(x, a)

)
≥ (Bi,hV

π
i,h+1)(x, a)− (Bi,hV̂

π
i,h+1)(x, a)

=
(
Pi,h(V

π
i,h+1 − V̂ π

i,h+1)
)
(x, a) ,

where the second inequality is because of Eq.(A.70). And since in
theH+1 step we have V π

i,H+1 = V̂ π
i,h+1 = 0, we can get Qπ

i,H(x, a)−
Q̂π

i,H(x, a). Then we use induction to prove Qπ
i,h(x, a) ≥ Q̂π

i,h(x, a)

for all h. Given Qπ
i,h+1(x, a) ≥ Q̂π

i,h+1(x, a), we have

Qπ
i,h(x, a)− Q̂π

i,h(x, a)

≥
(
Pi,h(V

π
i,h+1 − V̂ π

i,h+1)
)
(x, a)

= E〈Qπ
i,h+1(sh+1, ·)− Q̂π

i,h+1(sh+1, ·), πh+1(·|sh+1)〉A|sh = x, ah = a

≥ 0 . (A.73)

Then we have

V π
i,h(x)− V̂ π

i,h(x) = 〈Qπ
i,h(x, ·)− Q̂π

i,h(x, ·), πh(· | x)〉A ≥ 0 .
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Then we start our proof.

Proof of Theorem 4.4.1. First, we decompose the suboptimality
gap as follows

SubOpt(πPERM)

= Ec∼CV
π∗

c,1 (x1)− V π̂∗

c,1 (x1)

= Ec∼CV
π∗

c,1 (x1)−
1

n

n∑
i=1

V π∗

i,1 (x1) +
1

n

n∑
i=1

V πPERM

i,1 (x1)− Ec∼CV
πPERM

c,1 (x1)

+
1

n

n∑
i=1

(
V π∗

i,1 (x1)− V πPERM

i,1 (x1)
)
. (A.74)

For the first two terms, we can bound them following the stan-
dard generalization techniques ([126]), i.e., we use the covering
argument, Chernoff bound,and union bound.

Define the distance between policies d(π1, π2) ≜ maxs∈S,h∈[H] ‖π1
h(·|s)−

π2
h(·|s)‖1. We construct the ϵ-covering set Π̃ w.r.t. d such that

∀π ∈ Π, ∃π̃ ∈ Π̃, s.t. d(π, π̃) ≤ ϵ. (A.75)

Then we have

∀i ∈ [n], π ∈ Π, ∃π̃ ∈ Π̃, s.t.V π
i,1(x1)− V π̃

i,1(x1) ≤ Hϵ. (A.76)

By the definition of the covering number,
∣∣∣Π̃∣∣∣ = NΠ

ϵ . By Chernoff
bound and union bound over the policy set Π̃, we have with prob.
at least 1− δ

3 , for any π̃ ∈ Π̃,∣∣∣∣∣1n
n∑

i=1

V π̃
i,1(x1)− Ec∼CV

π̃
c,1(x1)

∣∣∣∣∣ ≤
√

2 log(6NΠ
ϵ /δ)

n
. (A.77)
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By Eq.(A.76) and Eq.(A.77), ∀i ∈ [n], π ∈ Π, ∃π̃ ∈ Π̃ with∣∣∣Π̃∣∣∣ = NΠ
ϵ , s.t.V π

i,1(x1) − V π̃
i,1(x1) ≤ Hϵ, and with probability at

least 1− δ/3, we have∣∣∣∣∣1n
n∑

i=1

V π
i,1(x1)− Ec∼CV

π
c,1(x1)

∣∣∣∣∣
≤

∣∣∣∣∣1n
n∑

i=1

V π̃
i,1(s1)− Ec∼CV

π̃
c,1(x1)

∣∣∣∣∣
+

∣∣∣∣∣1n
n∑

i=1

V π
i,1(s1)−

1

n

n∑
i=1

V π̃
i,1(s1)

∣∣∣∣∣+ ∣∣Ec∼CV
π̃
c,1(x1)− Ec∼CV

π
c,1(x1)

∣∣
≤
√

2 log(6NΠ
ϵ /δ)

n
+ 2Hϵ . (A.78)

Therefore, we have for the first two terms, w.p. at least 1 − 2
3δ

we can upper bound them with 4Hϵ+ 2
√

2 log(6NΠ
ϵ /δ)

n .
Then, what remains is to bound the term 1

n

∑n
i=1

(
V π∗

i,1 (x1) −
V πPERM

i,1 (x1)
)
.

First, by similar arguments, we have

V π∗

i,1 (x1)− V πPERM

i,1 (x1) ≤
(
V π∗

i,1 (x1)− V π̃PERM

i,1 (x1)
)
+ |V π̃PERM

i,1 (x1)− V πPERM

i,1 (x1)|

≤ Hϵ+ V π∗

i,1 (x1)− V π̃PERM

i,1 (x1) , (A.79)

where π̃PERM ∈ Π̃ such that |V π̃PERM

i,1 (x1)− V πPERM

i,1 (x1)| ≤ Hϵ.
By the definition of the oracle in Definition.4.2, the algorithm

design of Algo.3 (e.g., we call oracleO(Dh, V̂h+1, δ/(3nHNΠ
(Hn)−1))),

and use a union bound over H steps, n contexts, and NΠ
(Hn)−1

policies, we have: with probability at least 1− δ/3, the condition
in Eq.(A.70) holds (with the policy class Π replaced by Π̃ (and
ϵ = 1/(Hn)).
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Then, we have
1

n

n∑
i=1

(
V π∗

i,1 (x1)− V π̃PERM

i,1 (x1)
)

≤ 1

n

n∑
i=1

(
V π∗

i,1 (x1)− V̂ π̃PERM

i,1 (x1)
)

=
1

n

n∑
i=1

(
V π∗

i,1 (x1)− V̂ πPERM

i,1 (x1)
)
+

1

n

n∑
i=1

(
V̂ πPERM

i,1 (x1)− V̂ π̃PERM

i,1 (x1)
)

≤ 1

n

n∑
i=1

(
V π∗

i,1 (x1)− V̂ πPERM

i,1 (x1)
)
+H · 1

Hn

≤ 1

n

n∑
i=1

(
V π∗

i,1 (x1)− V̂ π∗

i,1 (x1)
)
+ 1/n , (A.80)

where the first inequality holds because of the pessimism in Lemma
A.2.3, the second inequality holds because |V̂ π̃PERM

i,1 (x1)−V̂ πPERM

i,1 (x1)| ≤
Hϵ with ϵ here specified as 1/(Hn), and the last inequality holds
because that in the algorithm design of Algo.4 we set πPERM =

argmaxπ∈Π 1
n

∑n
i=1 V̂

π
i,1(x1).

Then what left is to bound V π∗

i,1 (x1)− V̂ π∗

i,1 (x1).
And using Lemma A.1 in [91], we have

V π∗

i,1 (x1)− V̂ π∗

i,1 (x1)

= −
H∑
h=1

Eπ̂∗,Mi

[
ιπ

∗

i,h(sh, ah)
∣∣ s1 = x

]
+

H∑
h=1

Eπ∗,Mi

[
ιπ

∗

i,h(sh, ah)
∣∣ s1 = x

]
+

H∑
h=1

Eπ∗,Mi

[
〈Q̂π∗

i,h(sh, ·), π∗h(· | sh)− π∗h(· | sh)〉A
∣∣ s1 = x

]
≤ 2

H∑
h=1

Eπ∗,Mi

[
Γi,h(sh, ah)

∣∣ s1 = x
]
, (A.81)

where in the last inequality we use Lemma A.2.2.
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Finally, with Eq.(A.209), Eq.(A.78), Eq.(A.79), Eq.(A.80), and
Eq.(A.81), with ϵ set as 1

nH , we can get w.p. at least 1− δ

Ec∼CV
π∗

c,1 (x1)− V πPERM

c,1 (x1)

≤ 5

n
+ 2

√
2 log(6NΠ

(Hn)−1/δ)

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗,MiΓi,h(sh, ah)|s1 = x1

≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗,MiΓi,h(sh, ah)|s1 = x1 .

A.2.2.2 Proof of Theorem 4.4.2

Our proof has two steps. First, we define that

ιi,h(x, a) := Bi,hVi,h+1(x, a)−Qi,h(x, a) (A.82)

Then we have the following lemma from [91]:

Lemma A.2.4. Define the event E as

E =

{∣∣(B̂V̂ πi
i,h+1)(x, a)− (Bi,hV̂

πi
i,h+1)(x, a)

∣∣ ≤ Γi,h(x, a) ∀(x, a) ∈ S ×A, ∀h ∈ [H], ∀i ∈ [n]

}
,

Then by selecting the input parameter ξ = δ/(Hn) in O, we
have P(E) ≥ 1− δ and

0 ≤ ιi,h(x, a) ≤ 2Γi,h(x, a).

Proof. The proof is the same as [Lemma 5.1, [91]] with the prob-
ability assigned as δ/(Hn) and a union bound over h ∈ [H], i ∈
[n].
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Next lemma shows the difference between the value of the op-
timal policy π∗ and number n of different policies πi for n MDPs.

Lemma A.2.5. Let π be an arbitrary policy. Then we have
n∑

i=1

[V π
i,1(x1)− V πi

i,1 (x1)] =
n∑

i=1

H∑
h=1

Ei,π[〈Qi,h(·, ·), πh(·|·)− πi,h(·|·)〉A]

+
n∑

i=1

H∑
h=1

(Ei,π[ιi,h(xh, ah)]− Ei,πi
[ιi,h(xh, ah)])

(A.83)

Proof. The proof is the same as Lemma 3.1 in [91] except substi-
tuting π into the lemma.

We also have the following one-step lemma:

Lemma A.2.6 (Lemma 3.3, [217]). For any distribution p∗, p ∈
∆(A), if p′(·) ∝ p(·) · exp(α ·Q(x, ·)), then

〈Q(x, ·), p∗(·)− p(·)〉 ≤ αH2/2 + α−1 ·
(

KL(p∗(·)‖p(·))−KL(p∗(·)‖p′(·))
)
.

Given the above lemmas, we begin our proof of Theorem 4.4.2.

Proof of Theorem 4.4.2. Combining Lemma A.2.4 and Lemma A.2.5,
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we have
n∑

i=1

[V π∗

i,1 (x1)− V πi

i,1 (x1)]

≤
n∑

i=1

H∑
h=1

Ei,π∗[〈Qi,h, π
∗
h − πi,h〉] + 2

n∑
i=1

H∑
h=1

Ei,π∗[Γi,h(xh, ah)]

≤
n∑

i=1

H∑
h=1

αH2/2 + α−1Ei,π∗[KL(π∗h(·|xh)‖πi,h(·|xh))−KL(π∗h(·|xh)‖πi+1,h(·|xh))]

+ 2
n∑

i=1

H∑
h=1

Ei,π∗[Γi,h(xh, ah)]

≤ αH3n/2 + α−1 ·
H∑
h=1

Ei,π∗[KL(π∗h(·|xh)‖π1,h(·|xh))] + 2
n∑

i=1

H∑
h=1

Ei,π∗[Γi,h(xh, ah)]

≤ αH3n/2 + α−1H log |A|+ 2
n∑

i=1

H∑
h=1

Ei,π∗[Γi,h(xh, ah)],

where the last inequality holds since π1,h is the uniform distribu-
tion over A. Then, selecting α = 1/

√
H2n, we have

n∑
i=1

[V π∗

i,1 (x1)− V πi

i,1 (x1)] ≤ 2
√

n log |A|H2 + 2
n∑

i=1

H∑
h=1

Ei,π∗[Γi,h(sh, ah)],

which holds for the random selection ofD with probability at least
1 − δ. Meanwhile, note that each MDP Mi is drawn i.i.d. from
C. Meanwhile, note that πi only depends on MDP M1, ...,Mi−1.
Therefore, by the standard online-to-batch conversion, we have

P
(
1

n

n∑
i=1

[V π∗
i,1 (x1)− V πi

i,1 (x1)] +

(
1

n

n∑
i=1

Ec∼CV
πi
c,1(x1)− Ec∼CV

π∗
c,1 (x1)

)
≤ 2H

√
2 log 1/δ

n

)
≥ 1− δ,
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which suggests that with probability at least 1− 2δ,

Ec∼CV
π∗

c,1 (x1)−
1

n

n∑
i=1

Ec∼CV
πi
c,1(x1)

≤ 2

√
log |A|H2

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗[Γi,h(xh, ah)] + 2

√
2H log 1/δ

n
.

Therefore, by selecting πPPPO := random(π1, ..., πn) and applying
the Markov inequality, setting δ = 1/8, we have our bound holds.

A.2.3 Suboptimality bounds for real-world setups

In this section we state and prove the suboptimality bounds we
promised in Remarks 9 and 11, where we merge the sampled
contexts into m groups (generally, m << n) to reduce the com-
putational complexity in practical settings.

Assumem|n and the n contexts from offline dataset are equally
partitioned into m groups. We write the resulting average MDPs
(see Proposition 4.1) for each group as M̄1, . . . ,M̄m. For each
M̄j, we regard it as an individual context in the sense of (A.70)
and denote the resulting uncertainty quantifier and value function
as Γ′j,h, V ′πj,h.

Theorem A.2.7 (Suboptimality bound for Remark 9). Assume
the same setting as Theorem 4.4.1 with the original n contexts
grouped as m contexts, and denote the resulting algorithm as
PERM-mV. Then w.p. at least 1−δ, the output π′ of PERM-mV
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satisfies

SubOpt(π′) ≤ 2

√
2 log(6NΠ

(Hm)−1/δ)

n︸ ︷︷ ︸
I1:Supervised learning (SL) error

+
2

m

m∑
j=1

H∑
h=1

Eπ∗,M̄jΓ
′
j,h(sh, ah)|s1 = x1︸ ︷︷ ︸

I2:Reinforcement learning (RL) error

+
5

m
+ 2 sup

π

∣∣∣∣∣∣ 1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣∣︸ ︷︷ ︸
Additional approximation error

,

where Ej,π∗ is w.r.t. the trajectory induced by π∗ with the transi-
tion P̄j in the underlying average MDP M̄j.

Proof of Theorem A.2.7. Similar to the proof of Theorem 4.4.1,
we decompose the suboptimality gap as follows

SubOpt(π′)
= Ec∼CV

π∗

c,1 (x1)− V π′

c,1(x1)

= Ec∼CV
π∗

c,1 (x1)−
1

n

n∑
i=1

V π∗

i,1 (x1) +
1

n

n∑
i=1

V π′

i,1(x1)− Ec∼CV
π′

c,1(x1)

+
1

n

n∑
i=1

V π∗

i,1 (x1)−
1

m

m∑
j=1

V ′
π∗

j,1(x1) +
1

m

m∑
j=1

V ′
π′

j,1(x1)−
1

n

n∑
i=1

V π′

i,1(x1)

+
1

m

m∑
j=1

(
V ′

π∗

j,1(x1)− V ′
π′

j,1(x1)
)
. (A.84)

Note that we can bound the first and third lines of (A.84) with
the exactly same arguments as the proof of Theorem 4.4.1, the
only notation-wise difference is that the uncertainty quantifier
becomes Γ′ as we are operating on the level of average MDP M̄j.

The only thing left is to bound the second line of (A.84). This
is the same in spirit of the bound (A.67), so that we can express
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the bound as follows

1

n

n∑
i=1

V π∗

i,1 (x1)−
1

m

m∑
j=1

V ′
π∗

j,1(x1) +
1

m

m∑
j=1

V ′
π′

j,1(x1)−
1

n

n∑
i=1

V π′

i,1(x1)

≤ 2 sup
π

∣∣∣∣∣1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′
π
j,1(x1)

∣∣∣∣∣ .
To conclude, our final bound can be expressed as: with ϵ set

as 1
mH , we can get w.p. at least 1− δ

SubOpt(π′)

≤ 2

√
2 log(6NΠ

(Hm)−1/δ)

n
+

2

m

m∑
j=1

H∑
h=1

Eπ∗,M̄jΓ
′
j,h(sh, ah)|s1 = x1

+
5

m
+ 2 sup

π

∣∣∣∣∣1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′
π
j,1(x1)

∣∣∣∣∣ .

To prove the suboptimality bound for Remark 11, we denote
that the policies produced by PPPO after merging dataset to m

groups to be π1, . . . , πm, and the original PPPO algorithm would
produce the policies as π′1, . . . , π

′
n. We assume that the merging

of dataset from n to m groups is only to combine the consecutive
n/m terms from π′1, . . . , π

′
n and preserves the order.

Theorem A.2.8 (Suboptimality bound for Remark 11). Assume
the same setting as Theorem 4.4.2 with the original n contexts
grouped as m contexts, and denote the resulting algorithm as
PPPO-mV. Let Γ′j,h be the uncertainty quantifier returned by O
through the PPPO-mV algorithm. Selecting α = 1/

√
H2m. Then
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selecting δ = 1/8, w.p. at least 2/3, we have

SubOpt(πPPPO−mV ) ≤ 10

(√
log |A|H2

m︸ ︷︷ ︸
I1:SL error

+
1

m

m∑
j=1

H∑
h=1

Ej, π∗Γ′
j,h(sh, ah)|s1 = x1︸ ︷︷ ︸

I2:RL error

+ sup
π

∣∣∣∣∣∣ 1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣∣+ 1

n

n∑
i=1

sup
π

∣∣Ec[V
π
c,1(x1)]− V π

i,1(x1)
∣∣

+
1

m

m∑
j=1

sup
π

∣∣Ec[V
′π
c,1(x1)]− V ′π

j,1(x1)
∣∣ ).

where Ej,π∗ is w.r.t. the trajectory induced by π∗ with the transi-
tion P̄j in the underlying MDP M̄j.

Proof of Theorem A.2.8. Using the same arguments as in the proof
of Theorem 4.4.2 with α = 1/

√
H2m, we can derive the bound

m∑
j=1

[V ′
π∗

j,1(x1)−V ′
πj

j,1(x1)] ≤ 2
√
m log |A|H2+2

m∑
j=1

H∑
h=1

Ej,π∗[Γ′j,h(sh, ah)].

Leveraging this bound and online-to-batch, we obtain the fol-
lowing estimation

Ec[V
π∗

c,1 (x1)]−
1

m

m∑
j=1

Ec[V
πj

c,1(x1)]

=Ec[V
π∗

c,1 (x1)]−
1

n

n∑
i=1

Ec[V
π′
i

c,1(x1)] +
1

n

n∑
i=1

Ec[V
π′
i

c,1(x1)]−
1

m

m∑
j=1

Ec[V
πj

c,1(x1)]

≤2H
√

2 log 1/δ
n

+
1

n

n∑
i=1

(
Ec[V

π′
i

c,1(x1)]− V
π′
i

i,1(x1)
)

+
1

n

n∑
i=1

V π∗

i,1 (x1)−
1

m

m∑
j=1

Ec[V
πj

c,1(x1)]
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=2H

√
2 log 1/δ

n
+

1

n

n∑
i=1

V π∗

i,1 (x1)−
1

m

m∑
j=1

V ′
π∗

j,1(x1)

+
1

m

m∑
j=1

V ′
π∗

j,1(x1)−
1

m

m∑
j=1

V ′
πj

j,1(x1)

+
1

n

n∑
i=1

(
Ec[V

π′
i

c,1(x1)]− V
π′
i

i,1(x1)
)
+

1

m

m∑
j=1

V ′
πj

j,1(x1)−
1

m

m∑
j=1

Ec[V
πj

c,1(x1)]

≤2H
√

2 log 1/δ
n

+ sup
π

∣∣∣∣∣1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′
π
j,1(x1)

∣∣∣∣∣
+ 2

√
log |A|H2

m
+

2

m

m∑
j=1

H∑
h=1

Ej,π∗[Γ′j,h(sh, ah)]

+
1

n

n∑
i=1

sup
π

∣∣Ec[V
π
c,1(x1)]− V π

i,1(x1)
∣∣+ 1

m

m∑
j=1

sup
π

∣∣Ec[V
′π
c,1(x1)]− V ′

π
j,1(x1)

∣∣ .
Finally we apply Markov inequality and take δ = 1/8 as in the
proof of Theorem 4.4.2.

A.2.4 Results in Section 4.5

A.2.4.1 Proof of Theorem 4.5.1

By [91], the parameters specified as λ = 1, β(δ) = c·dH
√

log(2dHK/δ),
and applying union bound, we can get: for Algo.6, with proba-
bility at least 1− δ/3∣∣(B̂i,hV̂

π
i,h+1)(x, a)− (Bi,hV̂

π
i,h+1)(x, a)

∣∣ ≤ β
( δ

3nHNΠ
(Hn)−1

)(
ϕ(x, a)>Λ−1i,hϕ(x, a)

)1/2
,

for all i ∈ [n], π ∈ Π̃, (x, a) ∈ S ×A, h ∈ [H] , (A.85)

where Π̃ is the 1
Hn-covering set of the policy space Π w.r.t. dis-

tance d(π1, π2) = maxs∈S,h∈[H] ‖π1
h(·|s)− π2

h(·|s)‖1.
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Therefore, we can specify the Γi,h(·, ·) in Theorem 4.4.1 with
β
(

δ
3nHNΠ

(Hn)−1

)(
ϕ(x, a)>Λ−1i,hϕ(x, a)

)1/2, and follow the same process
as the proof of Theorem 4.4.1 to get the result for Algo.4 with
subroutine Algo.6.

Similarly, we can get: we can get: for Algo.6, with probability
at least 1− 1/4∣∣(B̂i,hV̂i,h+1)(x, a)− (Bi,hV̂i,h+1)(x, a)

∣∣ ≤ β
( δ

4nH

)(
ϕ(x, a)>Λ−1i,hϕ(x, a)

)1/2
,

for all i ∈ [n], (x, a) ∈ S ×A, h ∈ [H] . (A.86)

Therefore, we can specify the Γi,h(·, ·) in Theorem 4.4.2 with
β
(

δ
4nH

)(
ϕ(x, a)>Λ−1i,hϕ(x, a)

)1/2 and follow the same process as the
proof of Theorem 4.4.2 to get the result for Algo.5 with subroutine
Algo.6.

A.2.4.2 Proof of Corollary 4.1

By the assumption that Di is generated by behavior policy π̄i

which well-explores MDP Mi with constant ci (where the well-
explore is defined in Def.4.3), the proof of Corollary 4.6 in [91],
and applying a union bound over n contexts, we have that for
Algo.4 with subroutine Algo.6 w.p. at least 1− δ/2

‖ϕ(x, a)‖Λ−1
i,h
≤
√

2d

ciK

for all i ∈ [n], (x, a) ∈ S ×A and all h ∈ [H] , (A.87)

and for Algo.4 with subroutine Algo.6 w.p. at least 1− δ/2

‖ϕ(x, a)‖Λ−1
i,h
≤
√

2dH

ciK

for all i ∈ [n], (x, a) ∈ S ×A and all h ∈ [H] , (A.88)
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because we use the data splitting technique and we only utilize
each trajectory once for one data tuple at some stage h, so we
replace K with K/H.

Then, the result follows by plugging the results above into
Theorem 4.5.1.
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A.3 Appendix for Chapter 5

A.3.1 More Discussions on Related Work

In this section, we will give more comparisons and discussions on
some previous works that are related to our work to some extent.

There are some other works on bandits leveraging user (or
task) relations, which have some relations with the clustering of
bandits (CB) works to some extent, but are in different lines of
research from CB, and are quite different from our work. First,
besides CB, the work [179] also leverages user relations. Specif-
ically, it utilizes a known user adjacency graph to share context
and payoffs among neighbors, whereas in CB, the user relations
are unknown and need to be learnt, thus the setting differs a lot
from CB. Second, there are lines of works on multi-task learning
[280, 281, 282, 283, 284, 285], meta-learning [286, 287, 288] and
federated learning [289, 290], where multiple different tasks are
solved jointly and share information. Note that all of these works
do not assume an underlying unknown user clustering structure
which needs to be inferred by the agent to speed up learning.
For works on multi-task learning [280, 281, 282, 283, 284, 285],
they assume the tasks are related but no user clustering struc-
tures, and to the best of our knowledge, none of them consider
model misspefications, thus differing a lot from ours. For some
recent works on meta-learning [286, 287, 291], they propose gen-
eral Bayesian hierarchical models to share knowledge across tasks,
and design Thompson-Sampling-based algorithms to optimize the
Bayes regret, which are quite different from the line of CB works,
and differ a lot from ours. And additionally, as supported by the
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discussions in the works [288, 285], multi-task learning and meta-
learning are different lines of research from CB. For the works on
federated learning [289, 290], they consider the privacy and com-
munication costs among multiple servers, whose setting is also
very different from the previous CB works and our work.
Remark. Again, we emphasize that the goal of this work is to
initialize the study of the important CBMUM problem, and pro-
pose general design ideas for dealing with model misspecifications
in CB problems. Therefore, our study is based on fundamental
models on CB [46, 136] and MLB [138], and the algorithm design
ideas and theoretical analysis are pretty general. We leave incor-
porating the more recent model selection methods [140, 141] into
our framework to address the unknown exact maximum model
misspecification level as an interesting future work. It would also
be interesting to consider incorporating our methods and ideas
of tackling model misspecifications into the studies of multi-task
learning, meta learning and federated learning.

A.3.2 More Discussions on Assumptions

All the assumptions (Assumptions 9.2,9.3,9.4,9.1)in this work are
natural and basically follow (or less strigent than) previous works
on CB and MLB [46, 135, 136, 137, 138].

A.3.2.1 Less Strigent Assumption on on the Generating Distribu-
tion of Arm Vectors

We also make some contributions to relax a widely-used but strin-
gent assumption on the generating distribution of arm vectors.
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Specifically, our Assumption 9.4 on item regularity relaxes the
previous one used in previous CB works [46, 135, 136, 137] by re-
moving the condition that the variance should be upper bounded
by λ2

8 log(4|At|) . For technical details on this, please refer to the
theoretical analysis and discussions in Appendix A.3.10.

A.3.2.2 Discussions on Assumption 9.1 about Bounded Misspecifi-
cation Level

This assumption follows [138]. Note that this ϵ∗ can be an up-
per bound on the maximum misspecification level, not the exact
maximum itself. In real-world applications, the deviations are
usually small [48], and we can set a relatively big ϵ∗ (e.g., 0.2)
to be the upper bound. Our experimental results support this
claim. As shown in our experimental results on real-data case
2, even when ϵ∗ is unknown, our algorithms still perform well by
setting ϵ∗ = 0.2. Some recent studies [140, 141] use model selec-
tion methods to theoretically deal with unknown exact maximum
misspecification level in the single-user case, which is not the em-
phasis of this work. Additionally, the work [141] assumes that
the learning agent has access to a regression oracle. And for the
work [140], though their regret bound is dependent on the exact
maximum misspecification level that needs not to be known by
the agent, an upper bound of the exact maximum misspecifica-
tion level is still needed. We leave incorporating their methods to
deal with unknown exact maximum misspecification level as an
interesting future work.
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A.3.2.3 Discussions on Assumption 9.3 about the Theoretical Re-
sults under General User Arrival Distributions

The uniform arrival in Assumption 9.3 follows previous CB works
[46, 135, 137], it only affects the T0 term, which is the time af-
ter which the algorithm maintains a “good partition”and is
of O(u logT ). For an arbitrary arrival distribution, T0 becomes
O(1/pmin logT ), where pmin is the minimal arrival probability of
a user. And since it is a lower-order term (of O(logT )), it will
not affect the main order of our regret upper bound which is of
O(ϵ∗T

√
md logT+d

√
mT logT ). The work [136] studies arbitrary

arrivals and aims to remove the 1/pmin factor in this term, but
their setting is different. They make an additional assumption
that users in the same cluster not only have the same preference
vector, but also the same arrival probability, which is different
from our setting and other classic CB works [46, 135, 137] where
we only assume users in the same cluster share the same prefer-
ence vector.

A.3.3 Highlight of the Theoretical Analysis

Our proof flow and methodologies are novel in clustering of ban-
dits (CB), which are expected to inspire future works on model
misspecifications and CB. The main challenge of the regret anal-
ysis in CBMUM is that due to the estimation inaccuracy caused
by misspecifications, it is impossible to cluster all users exactly
correctly, and it is highly non-trivial to bound the regret caused
by “misclustering” ζ-close users.

To the best of our knowledge, the common proof flow of pre-
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vious CB works (e.g., [46, 135, 137]) can be summarized in two
steps: The first is to prove a sufficient time T ′0 after which the al-
gorithms can cluster all users exactly correctly with high prob-
ability. Note that the inferred clustering structure remains static
after T ′0, making the analysis easy. Second, after the correct
static clustering, the regret can be trivially bounded by bound-
ing m (number of underlying clusters) independent linear bandit
algorithms, resulting in a O(d

√
mT logT ) regret.

The above common proof flow is straightforward in CB with
perfectly linear models, but it would fail to get a non-vacuous
regret bound for CBMUM. In CBMUM, it is impossible to learn
an exactly correct static clustering structure with model misspec-
ifications. In particular, we prove that we can only expect the
algorithm to cluster ζ-close users together rather than cluster all
users exactly correctly. Therefore, the previous flow can not be
applied to the more challenging CBMUM problem.

We do the following to address the challenges in obtaining
a tight regret bound for CBMUM. With the carefully-designed
novel key components of RCLUMB, we can prove a sufficient
time T0 after which RCLUMB can get a “good partition” (Def-
inition 5.4) with high probability, which means the cluster Vt

assigned to it contains all users in the same ground-truth clus-
ter as it, and possibly some other it’s ζ-close users. Intuitively,
after T0, the algorithm can leverage all the information from the
users’ ground-truth clusters but may misuse some information
from other ζ-close users with preference gaps up to ζ, causing
a regret of “misclustering” ζ-close users. It is highly non-
trivial to bound this part of regret, and the proof methods would
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be beneficial for future studies in CB in challenging cases when
it is impossible to cluster all users exactly correctly. For details,
please refer to the discussions “(ii) Bounding the term of mis-
clustering it’s ζ-close users” in Section 5.4, the key Lemma 5.4.4
(Bound of error caused by misclustering), its proof and tightness
discussion in Appendix A.3.7. Also, a more subtle analysis is
needed to handle the time-varying inferred clustering structure
since the “good partition” may change over time, whereas in the
previous CB works, the clustering structure remains static after
T ′0. For theoretical details on this, please refer to Appendix A.3.5.

A.3.4 Discussions on why Trivially Combining Existing
CB and MLB Works Could Not Achieve a Non-
vacuous Regret Upper Bound

We consider discussing regret upper bounds for CB without con-
sidering misspecifications for three cases: (1) neither the cluster-
ing process nor the decision process considers misspecifications
(previous CB algorithms); (2) the decision process does not con-
sider misspecifications; (3) the clustering process does not con-
sider misspecifications.

For cases (1) and (2), the decision process could contribute
to the leading regret. We consider the case where there are m

underlying clusters, with each cluster’s arrival being T/m, and
the agent knows the underlying clustering structure. For this
case, there exist some instances where the regret upper bound
R(T ) is strictly larger than ϵ∗T

√
m logT asymptotically in T .

Formally, in the discussion of “Failure of unmodified algorithm”
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in Appendix E in [138], they give an example to show that in
the single-user case, the regret R1(T ) of the classic linear ban-
dit algorithms without considering misspecifications will have:
lim

T→+∞

R1(T )

ϵ∗T
√
m logT

= +∞. In our problem with multiple users
and m underlying clusters, even if we know the underlying clus-
tering structure and keep m independent linear bandit algorithms
with Ti for the cluster i ∈ [m] to leverage the common information
of clusters, the best we can get is R2(T ) =

∑
i∈[m]R1(Ti). By the

above results, if the decision process does not consider misspec-
ifications, we have lim

T→+∞

R2(T )

ϵ∗T
√
m logT

= lim
T→+∞

mR1(T/m)

ϵ∗T
√
m logT

=

+∞. Recall that the regret upper bound R(T ) of our proposed
algorithms is of O(ϵ∗T

√
md logT + d

√
mT logT ) (thus, we have

lim
T→+∞

R(T )

ϵ∗T
√
m logT

< +∞), which gives a proof that that the
regret upper bound of our proposed algorithms is asymptotically
much better than CB algorithms in cases (1)(2).

For case (3), if the clustering process does not use the more
tolerant deletion rule in Line 10 of Algo.7, the gap between users
linked by edges would possibly exceed ζ (ζ = 2ϵ∗

√
2
λ̃x
) even af-

ter T0, which will result in a regret upper bound no better than
O(ϵ∗u

√
dT ). As the number of users u is usually huge in practice,

this result is vacuous. The reasons for getting the above claim are
as follows. Even if the clustering process further uses our deletion
rule considering misspecifications, and the users linked by edges
are within ζ distance, failing to extract 1-hop users (Line 5 in
Algo.7) would cause the leading O(ϵ∗u

√
dT ) regret term, as in

the worst case, the preference vector θ of the user in Ṽt who is
h-hop away from user it could deviate by hζ from θit, where h can
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be as large as u, and it would make the second term in Eq.(5.8) a
O(ϵ∗u

√
dT ) term. If we completely do not consider the misspec-

ifications in the clustering process, the above user gap between
users linked by edges would possibly exceed ζ, which will cause a
regret upper bound worse than O(ϵ∗u

√
dT ).

A.3.5 Proof of Theorem 6.4.3

We first prove the result in the case when γ1 defined in Definition
5.2 is not infinity, i.e., 4ϵ∗

√
2
λ̃x

< γ1 <∞. The proof of the special
case when γ1 =∞ will directly follow the proof of this case.

For the instantaneous regret Rt at round t, with probability at
least 1− 5δ for some δ ∈ (0, 15), at ∀t ≥ T0:

Rt = (x>a∗tθit + ϵit,ta∗t
)− (x>atθit + ϵit,tat

)

= x>a∗t (θit − θ̂V t,t−1) + (x>a∗t θ̂V t,t−1 + Ca∗t ,t)− (x>atθ̂V t,t−1 + Cat,t)

+ x>at(θ̂V t,t−1 − θit) + Cat,t − Ca∗t ,t + (ϵit,ta∗t
− ϵit,tat

)

≤ 2Cat,t +
2ϵ∗
√
2d

λ̃
3
2
x

I{V t /∈ V}+ 2ϵ∗ ,

(A.89)
where the last inequality holds by the UCB arm selection strategy
in Eq.(6.3), the concentration bound given in Lemma 6.4.2, and
the fact that

∥∥ϵi,t∥∥∞ ≤ ϵ∗, ∀i ∈ U , ∀t.
We define the following events. Let

E0 = {Rt ≤ 2Cat,t +
2ϵ∗
√
2d

λ̃
3
2
x

I{V t /∈ V}+ 2ϵ∗,

for all {t : t ≥ T0, and the algorithm maintains a “good partition” at t}} ,
E1 = {the algorithm maintains a “good partition” for all t ≥ T0} ,
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E = E0 ∩ E1 .

P(E0) ≥ 1 − 2δ. According to Lemma A.3.2, P(E1) ≥ 1 − 3δ.
Thus, P(E) ≥ 1− 5δ for some δ ∈ (0, 15). Take δ = 1

T , we can get
that

E[R(T )] = P(E)I{E}R(T ) + P(E)I{E}R(T )

≤ I{E}R(T ) + 5× 1

T
× T

= I{E}R(T ) + 5 ,

(A.90)

where E denotes the complementary event of E , I{E}R(T ) de-
notes R(T ) under event E , I{E}R(T ) denotes R(T ) under event
E , and we use R(T ) ≤ T to bound R(T ) under event E .

Then it remains to bound I{E}R(T ):

I{E}R(T ) ≤ R(T0) + E[I{E}
T∑

t=T0+1

Rt]

≤ T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] +
2ϵ∗
√
2d

λ̃
3
2
x

T∑
t=T0+1

E[I{E , V t /∈ V}] + 2ϵ∗T

(A.91)

= T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] +
2ϵ∗
√
2d

λ̃
3
2
x

T∑
t=T0+1

P(I{E , V t /∈ V}) + 2ϵ∗T

≤ T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] +
2ϵ∗
√
2d

λ̃
3
2
x

× ũ

u
T + 2ϵ∗T ,

(A.92)
where Eq.(A.91) follows from Eq.(A.195). Eq.(A.92) holds since
under Assumption 9.3 about user arrival uniformness and by Def-
inition 5.4 of “good partition”, P(I{E , V t /∈ V}) ≤ ũ

u , ∀t ≥ T0,
where ũ is defined in Definition 5.3.
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Then we need to bound E[I{E}
∑T

t=T0+1Cat,t]:

I{E}
T∑

t=T0+1

Cat,t =
(√

λ+

√
2 log(1

δ
) + d log(1 + T

λd
)
)
I{E}

T∑
t=T0+1

‖xat‖M−1

V t,t−1

+ I{E}ϵ∗
T∑

t=T0+1

∑
s∈[t−1]

is∈V t

∣∣∣x>atM−1
V t,t−1xas

∣∣∣ . (A.93)

Next, we bound the I{E}
∑T

t=T0+1 ‖xat‖M−1

V t,t−1
term in Eq.(A.93):

I{E}
T∑

t=T0+1

‖xat‖M−1

V t,t−1

= I{E}
T∑

t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′t,k} ‖xat‖M−1

V
′
t,k,t−1

≤ I{E}
T∑

t=T0+1

m∑
j=1

I{it ∈ Vj} ‖xat‖M−1

Vj,t−1
(A.94)

≤ I{E}
m∑
j=1

√√√√ T∑
t=T0+1

I{it ∈ Vj}
T∑

t=T0+1

I{it ∈ Vj} ‖xat‖
2

M
−1

Vj,t−1

(A.95)

≤ I{E}
m∑
j=1

√
2TVj ,Td log(1 +

T

λd
) (A.96)

≤ I{E}

√√√√2
m∑
j=1

1
m∑
j=1

TVj ,Td log(1 +
T

λd
)

= I{E}
√
2mdT log(1 + T

λd
) , (A.97)

where we use mt to denote the number of connected com-
ponents partitioned by the algorithm at t, Ṽ ′t,k, k ∈ [mt] to de-
note the connected components partitioned by the algorithm at
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t, V ′t,k ⊆ Ṽ ′t,k to denote the subset extracted to be the cluster
V t for it from Ṽ ′t,k conditioned on it ∈ Ṽ ′t,k, and TVj ,T to denote
the number of times that the served users lie in the ground-truth
cluster Vj up to time T , i.e., TVj ,T =

∑
t∈[T ] I{it ∈ Vj}.

The reasons for having Eq.(A.94) are as follows. Under event
E , the algorithm will always have a “good partition” after T0.
By Definition 5.4 and the proof process of Lemma A.3.2 about
the edge deletion conditions, we can get mt ≤ m and if it ∈
Ṽ ′t,k, it ∈ Vj, then Vj ⊆ V

′
t,k since V

′
t,k contains Vj and possibly

other ground-truth clusters Vn, n ∈ [m], whose preference vectors
are ζ-close to θj. Therefore, by the definition of the regular-
ized Gramian matrix, we can get M

V
′
t,k,t−1

�MVj ,t−1, ∀t ≥ T0 + 1.
Thus by the above reasoning,

∑mt

k=1 I{it ∈ Ṽ ′t,k} ‖xat‖M−1

V
′
t,k,t−1

≤∑m
j=1 I{it ∈ Vj} ‖xat‖M−1

Vj,t−1
, ∀t ≥ T0 + 1. Eq.(A.223) holds by

the Cauchy–Schwarz inequality; Eq.(A.96) follows by the fol-
lowing technical Lemma A.4.2. Eq.(A.97) is from the Cauchy–
Schwarz inequality and the fact that

∑m
j=1 TVj ,T = T .

We then bound the last term in Eq.(A.93):

I{E}ϵ∗
T∑

t=T0+1

∑
s∈[t−1]

is∈V t

∣∣∣x>atM−1
V t,t−1xas

∣∣∣
= I{E}ϵ∗

T∑
t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′t,k}
∑
s∈[t−1]

is∈V
′
t,k

∣∣∣x>atM−1
V

′
t,k,t−1

xas

∣∣∣



A.3. APPENDIX FOR CHAPTER 5 245

≤ I{E}ϵ∗
T∑

t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′t,k}

√√√√√ ∑
s∈[t−1]

is∈V
′
t,k

1
∑
s∈[t−1]

is∈V
′
t,k

∣∣∣x>atM−1
V

′
t,k,t−1

xas

∣∣∣2
(A.98)

≤ I{E}ϵ∗
T∑

t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′t,k}
√

T
V

′
t,k,t−1

‖xat‖
2

M
−1

V
′
t,k,t−1

(A.99)

≤ I{E}ϵ∗
T∑

t=T0+1

√√√√ mt∑
k=1

I{it ∈ Ṽ ′t,k}
mt∑
k=1

I{it ∈ Ṽ ′t,k}TV
′
t,k,t−1

‖xat‖
2

M
−1

V
′
t,k,t−1

(A.100)

≤ I{E}ϵ∗
√
T

T∑
t=T0+1

√√√√ mt∑
k=1

I{it ∈ Ṽ ′t,k} ‖xat‖
2

M
−1

V
′
t,k,t−1

(A.101)

≤ I{E}ϵ∗
√
T

√√√√ T∑
t=T0+1

1
T∑

t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′t,k} ‖xat‖
2

M
−1

V
′
t,k,t−1

(A.102)

≤ I{E}ϵ∗
√
T

√√√√T

T∑
t=T0+1

m∑
j=1

I{it ∈ Vj} ‖xat‖
2

M
−1

Vj,t−1
(A.103)

= I{E}ϵ∗T

√√√√ m∑
j=1

T∑
t=T0+1

I{it ∈ Vj} ‖xat‖
2

M
−1

Vj,t−1

≤ I{E}ϵ∗T
√

2md log(1 + T

λd
) , (A.104)

where Eq.(A.98), Eq.(A.100) and Eq.(A.102) hold because of
the Cauchy–Schwarz inequality, Eq.(A.99) holds sinceM

V
′
t,k,t−1

�∑
s∈[t−1]

is∈V
′
t,k

xasx
>
as
, Eq.(A.101) is because T

V
′
t,k,t−1

≤ T , Eq. (A.103)

follows from the same reasoning as Eq.(A.94), and Eq.(A.104)
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comes from the following technical Lemma A.4.2.
Finally, plugging Eq.(A.97) and Eq.(A.104) into Eq.(A.93),

take expectation and plug it into Eq.(A.92), we can get:

R(T ) ≤5 + T0 +
ũ

u
× 2ϵ∗

√
2dT

λ̃
3
2
x

+ 2ϵ∗T

(
1 +

√
2md log(1 + T

λd
)

)
+ 2

(√
λ+

√
2 log(T ) + d log(1 + T

λd
)

)
×
√
2mdT log(1 + T

λd
) ,

(A.105)

where

T0 = 16u log(u
δ
)+4umaxmax{ 8d

λ̃x(
γ1
4 − ϵ∗

√
1

2λ̃x
)2

log(u
δ
),
16

λ̃2
x

log( 8d
λ̃2
xδ
)}

is given in the following Lemma A.3.2 in Appendix A.3.8.

A.3.6 Proof and Discussions of Theorem 6.4.4

In the work [138], they give a lower bound for misspecified linear
bandits with a single user. The lower bound of R(T ) is given by:
R3(T ) ≥ ϵ∗T

√
d. Therefore, suppose our problem with multiple

users and m underlying clusters where the arrival times are Ti

for each cluster, then for any algorithms, even if they know the
underlying clustering structure and keep m independent linear
bandit algorithms to leverage the common information of clusters,
the best they can get is R(T ) =

∑
i∈[m]R3(Ti) ≥ ϵ∗

∑
i∈[m] Ti

√
d =

ϵ∗T
√
d, which gives a lower bound of O(ϵ∗T

√
d) for the CBMUM

problem. Recall that the regret upper bound of our algorithms
is of O(ϵ∗T

√
md logT + d

√
mT logT ), asymptotically matching

this lower bound with respect to T up to logarithmic factors and
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with respect to m up to O(
√
m) factors, showing the tightness of

our theoretical results (where m are typically very small for real
applications).

We conjecture that the gap for them factor is due to the strong
assumption that cluster structures are known to prove our lower
bound, and whether there exists a tighter lower bound will be left
for future work.

A.3.7 Proof of the key Lemma 5.4.4

In Lemma 5.4.4, we want to bound
∣∣∣∣x>aM−1

V t,t−1
∑

s∈[t−1]

is∈V t

xasx
>
as
(θis − θit)

∣∣∣∣.
By the definition of “good partition”, we have ‖θis − θit‖2 ≤
ζ , ∀is ∈ V t. It is an easy-to-be-made mistake to directly drag
‖θis − θit‖2 out to upper bound it by

∥∥∥∥x>aM−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasx
>
as

∥∥∥∥
2

×

ζ and then proceed. We need more careful analysis.
We first prove the following general lemma.

Lemma A.3.1. For vectors x1,x2, . . . ,xk ∈ Rd,‖xi‖2 ≤ 1, ∀i ∈ [k],
and vectors θ1,θ2, . . . , θk ∈ Rd, ‖θi‖2 ≤ C, ∀i ∈ [k], where C > 0

is a constant, we have:∥∥∥∥∥
k∑

i=1

xix
>
i θi

∥∥∥∥∥
2

≤ C
√
d

∥∥∥∥∥
k∑

i=1

xix
>
i

∥∥∥∥∥
2

.
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Proof. Let X ∈ Rd×k be a matrix such that it has xi s as its

columns, i.e., X = [x1, . . . ,xk] =


x11 x21 · · · xk1

x12 x22 · · · xk2
... ... . . . ...

x1d x2d · · · xkd

 .

Let y ∈ Rk×1 be a vector that has x>i θi s as its elements, i.e.,
y = [x>1 θ1, . . . ,x

>
k θk]

>. Then we have:∥∥∥∥∥
k∑

i=1

xix
>
i θi

∥∥∥∥∥
2

2

= ‖Xy‖22 ≤ ‖X‖
2
2 ‖y‖

2
2 (A.106)

= ‖X‖22
k∑

i=1

(x>i θi)
2

≤ ‖X‖22
k∑

i=1

‖xi‖22 ‖θi‖22 (A.107)

≤ C2 ‖X‖22
k∑

i=1

‖xi‖22

= C2 ‖X‖22 ‖X‖
2
F

≤ C2d ‖X‖42 (A.108)

= C2d
∥∥XX>∥∥2

2
(A.109)

= C2d

∥∥∥∥∥
k∑

i=1

xix
>
i

∥∥∥∥∥
2

2

, (A.110)

where Eq. (A.106) follows by the matrix operator norm inequal-
ity, Eq. (A.107) follows by the Cauchy–Schwarz inequality, Eq.
(A.108) follows by ‖X‖F ≤

√
d ‖X‖2, Eq. (A.109) follows from

‖X‖22 =
∥∥XX>

∥∥
2
.

The above result is tight. We can show that the lower bound
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of
∥∥∥∑k

i=1 xix
>
i θi

∥∥∥
2
under the conditions in the lemma is exactly

C
√
d
∥∥∥∑k

i=1 xix
>
i

∥∥∥
2
. Specifically, let k = 2, C = 1, d = 2, x1 =

[0, 1]>, x2 = [1, 0]>, θ1 = [1, 0]>, θ2 = [0, 1]>, then we have∥∥∥∑2
i=1 xix

>
i θi

∥∥∥
2
=
∥∥[1, 1]>∥∥

2
=
√
2, and C

√
d
∥∥∥∑2

i=1 xix
>
i

∥∥∥
2
=

1 ×
√
2 ×

∥∥∥∥∥
[
1 0

0 1

]∥∥∥∥∥
2

=
√
2. Therefore, we have that the upper

bound given in Lemma A.3.1 matches the lower bound.
We are now ready to prove the key Lemma 5.4.4 with the above

Lemma A.3.1.
At any t ≥ T0, if the current partition is a “good partition”,

and V t /∈ V , then for all xa ∈ Rd, ‖xa‖2 ≤ 1, with probability at
least 1− δ:∣∣∣∣∣∣∣x>aM

−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasx
>
as
(θis − θit)

∣∣∣∣∣∣∣
≤ ‖xa‖2

∥∥∥∥∥∥∥M
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasx
>
as
(θis − θit)

∥∥∥∥∥∥∥
2

(A.111)

≤
∥∥∥M−1

V t,t−1

∥∥∥
2

∥∥∥∥∥∥∥
∑
s∈[t−1]

is∈V t

xasx
>
as
(θis − θit)

∥∥∥∥∥∥∥
2

(A.112)

≤ 2ϵ∗

√
2d

λ̃x

×
∥∥∥M−1

V t,t−1

∥∥∥
2

∥∥∥∥∥∥∥
∑
s∈[t−1]

is∈V t

xasx
>
as

∥∥∥∥∥∥∥
2

(A.113)

≤ 2ϵ∗

√
2d

λ̃x

×
λmax(

∑
s∈[t−1]

is∈V t

xasx
>
as
)

λmin(MV t,t−1)
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≤ 2ϵ∗

√
2d

λ̃x

×
TV t,t−1

2TV t,t−1λ̃x + λ
(A.114)

≤ ϵ∗
√
2d

λ̃
3
2
x

,

where Eq.(A.111) follows by the Cauchy–Schwarz inequality, Eq.(A.112)
follows from the inequality of matrix’s operator norm, Eq.(A.113)
follows from the fact that in a “good partition”, ‖θit − θl‖2 ≤
2ϵ∗
√

2
λ̃x
, ∀l ∈ V t and Lemma A.3.1, Eq.(A.114) follows by Eq.(A.348)

with probability ≥ 1− δ.

A.3.8 Lemma A.3.2 of the sufficient time T0 and its proof

The following lemma gives a sufficient time T0 for the algorithm
to get a “good partition”.

Lemma A.3.2. With the carefully designed edge deletion rule,
after

T0 ≜ 16u log(u
δ
) + 4umaxmax{ 8d

λ̃x(
γ1
4 − ϵ∗

√
1

2λ̃x
)2

log(u
δ
),
16

λ̃2
x

log( 8d
λ̃2
xδ
)}

= O

(
u

(
d

λ̃x(γ1 − ζ)2
+

1

λ̃2
x

)
log 1

δ

)
rounds, with probability at least 1 − 3δ for some δ ∈ (0, 13),
RCLUMB can always get a “good partition”.

Below is the detailed proof of Lemma A.3.2.

Proof. We first prove the following result:
With probability at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T ]:∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤

β(Ti,t,
δ
u) + ϵ∗

√
Ti,t√

λ+ λmin(Mi,t)
, ∀i ∈ U , (A.115)
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where β(Ti,t,
δ
u) ≜

√
λ+

√
2 log(uδ ) + d log(1 + Ti,t

λd ).

θ̂i,t − θj(i) = (
∑
s∈[t]
is=i

xasx
>
as
+ λI)−1

(∑
s∈[t]
is=i

xas(x
>
as
θj(i) + ϵis,sas

+ ηs)

)
− θj(i)

(A.116)

= (
∑
s∈[t]
is=i

xasx
>
as
+ λI)−1[(

∑
s∈[t]
is=i

xasx
>
as
+ λI)θj(i) − λθj(i) +

∑
s∈[t]
is=i

xasϵ
is,s
as

+
∑
s∈[t]
is=i

xasηs]− θj(i)

= −λM̃−1
i,t θ

j(i) + M̃−1
i,t

∑
s∈[t]
is=i

xasϵ
is,s
as

+ M̃−1
i,t

∑
s∈[t]
is=i

xasηs ,

where we denote M̃i,t = Mi,t + λI, and Eq.(A.116) holds by
definition.

Therefore,

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤ λ

∥∥∥M̃−1
i,t θ

j(i)
∥∥∥
2
+

∥∥∥∥∥∥∥M̃−1
i,t

∑
s∈[t]
is=i

xasϵ
is,s
as

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥M̃−1
i,t

∑
s∈[t]
is=i

xasηs

∥∥∥∥∥∥∥
2

.

(A.117)
We then bound the three terms in Eq.(A.162) one by one. For

the first term:

λ
∥∥∥M̃−1

i,t θ
j(i)
∥∥∥
2
≤ λ

∥∥∥M̃− 1
2

i,t

∥∥∥2
2

∥∥∥θj(i)
∥∥∥
2
≤

√
λ√

λmin(M̃i,t)
, (A.118)

where we use the Cauchy–Schwarz inequality, the inequality for
the operator norm of matrices, and the fact that λmin(M̃i,t) ≥ λ.
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For the second term in Eq.(A.162):∥∥∥∥∥∥∥M̃−1
i,t

∑
s∈[t]
is=i

xasϵ
is,s
as

∥∥∥∥∥∥∥
2

= max
x∈Sd−1

∑
s∈[t]
is=i

x>M̃−1
i,t xasϵ

is,s
as

≤ max
x∈Sd−1

∑
s∈[t]
is=i

∣∣∣x>M̃−1
i,t xasϵ

is,s
as

∣∣∣
≤ max

x∈Sd−1

∑
s∈[t]
is=i

∣∣∣x>M̃−1
i,t xas

∣∣∣ ∥∥ϵis,sas

∥∥
∞ (A.119)

≤ ϵ∗ max
x∈Sd−1

∑
s∈[t]
is=i

∣∣∣x>M̃−1
i,t xas

∣∣∣
≤ ϵ∗ max

x∈Sd−1

√√√√∑
s∈[t]
is=i

1
∑
s∈[t]
is=i

∣∣∣x>M̃−1
i,t xas

∣∣∣2
(A.120)

≤ ϵ∗
√

Ti,t

√
max
x∈Sd−1

x>M̃−1
i,t x (A.121)

=
ϵ∗
√

Ti,t√
λmin(M̃i,t)

, (A.122)

where we denote Sd−1 = {x ∈ Rd : ‖x‖2 = 1}, Eq.(A.119) fol-
lows from Holder’s inequality, Eq.(A.120) follows by the Cauchy–
Schwarz inequality, Eq.(A.121) holds because M̃i,t �

∑
s∈[t]
is=i

xasx
>
as
,

Eq.(A.122) follows from the Courant-Fischer theorem.
For the last term in Eq.(A.162)∥∥∥∥∥∥∥M̃−1

i,t

∑
s∈[t]
is=i

xasηs

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥M̃− 1
2

i,t

∑
s∈[t]
is=i

xasηs

∥∥∥∥∥∥∥
2

∥∥∥M̃− 1
2

i,t

∥∥∥
2

(A.123)
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=

∥∥∥∑ s∈[t]
is=i

xasηs

∥∥∥
M̃−1

i,t√
λmin(M̃i,t)

, (A.124)

where Eq.(A.164) follows by the Cauchy–Schwarz inequality and
the inequality for the operator norm of matrices, and Eq.(A.165)
follows by the Courant-Fischer theorem.

Following Theorem 1 in [43], with probability at least 1− δ for
some δ ∈ (0, 1), for any i ∈ U , we have:∥∥∥∥∥∥∥

∑
s∈[t]
is=i

xasηs

∥∥∥∥∥∥∥
M̃−1

i,t

≤

√
2 log(u

δ
) + log(det(M̃i,t)

det(λI) )

≤
√
2 log(u

δ
) + d log(1 + Ti,t

λd
) , (A.125)

where det(M ) denotes the determinant of matrix M , Eq.(A.166)

is because det(M̃i,t) ≤

(
trace(λI+

∑
s∈[t]
is=i

xasx
⊤
as)

d

)d

≤
(λd+Ti,t

d

)d, and
det(λI) = λd.

Plugging Eq.(A.166) into Eq. (A.165), then plugging Eq. (A.163),
Eq.(A.122) and Eq.(A.165) into Eq.(A.162), we can get that Eq.(A.161)
holds with probability ≥ 1− δ.

Then, with the item regularity assumption stated in Assump-
tion 9.4, the technical Lemma A.4.1, together with Lemma 7 in
[135], with probability at least 1 − δ, for a particular user i, at
any t such that Ti,t ≥ 16

λ̃2
x

log( 8d
λ̃2
xδ
), we have:

λmin(M̃i,t) ≥ 2λ̃xTi,t + λ . (A.126)

Based on the above reasoning, we have: if Ti,t ≥ 16
λ̃2
x

log( 8d
λ̃2
xδ
),
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then with probability ≥ 1− 2δ, we have:∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u) + ϵ∗

√
Ti,t√

λmin(M̃i,t)

≤
β(Ti,t,

δ
u) + ϵ∗

√
Ti,t√

2λ̃xTi,t + λ

≤

√
λ+

√
2 log(uδ ) + d log(1 + Ti,t

λd )√
2λ̃xTi,t + λ

+ ϵ∗

√
1

2λ̃x

,

(A.127)

for any i ∈ U .
Let
√
λ+

√
2 log(uδ ) + d log(1 + Ti,t

λd )√
2λ̃xTi,t + λ

+ ϵ∗

√
1

2λ̃x

<
γ1
4
, (A.128)

which is equivalent to
√
λ+

√
2 log(uδ ) + d log(1 + Ti,t

λd )√
2λ̃xTi,t + λ

<
γ1
4
− ϵ∗

√
1

2λ̃x

, (A.129)

where γ1 is given in Definition 5.2.
Assume λ ≤ 2 log(uδ ) + d log(1 + Ti,t

λd ), which is typically held,
then a sufficient condition for Eq. (A.129) is:

2 log(uδ ) + d log(1 + Ti,t

λd )

2λ̃xTi,t

<
1

4
(
γ1
4
− ϵ∗

√
1

2λ̃x

)2 . (A.130)

To satisfy the condition in Eq.(A.130), it is sufficient to show

2 log(uδ )
2λ̃xTi,t

<
1

8
(
γ1
4
− ϵ∗

√
1

2λ̃x

)2 (A.131)
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and
d log(1 + Ti,t

λd )

2λ̃xTi,t

<
1

8
(
γ1
4
− ϵ∗

√
1

2λ̃x

)2 . (A.132)

From Eq.(A.319), we can get:

Ti,t ≥
8 log(uδ )

λ̃x(
γ1
4 − ϵ∗

√
1

2λ̃x
)2

. (A.133)

Following Lemma 9 in [135], we can get the following sufficient
condition for Eq.(A.320):

Ti,t ≥
8d log( 4

λλ̃x(
γ1
4 −ϵ∗

√
1

2λ̃x
)2
)

λ̃x(
γ1
4 − ϵ∗

√
1

2λ̃x
)2

. (A.134)

Assume u
δ ≥

4

λλ̃x(
γ1
4 −ϵ∗

√
1

2λ̃x
)2
, which is typically held, we can get

that
Ti,t ≥

8d

λ̃x(
γ1
4 − ϵ∗

√
1

2λ̃x
)2

log(u
δ
) (A.135)

is a sufficient condition for Eq.(A.128). Together with the condi-
tion that Ti,t ≥ 16

λ̃2
x

log( 8d
λ̃2
xδ
), we can get that if

Ti,t ≥ max{ 8d

λ̃x(
γ1
4 − ϵ∗

√
1

2λ̃x
)2

log(u
δ
),
16

λ̃2
x

log( 8d
λ̃2
xδ
)}, ∀i ∈ U ,

(A.136)
then with probability ≥ 1− 2δ:∥∥∥θ̂i,t − θj(i)

∥∥∥
2
<

γ1
4
, ∀i ∈ U .

By Lemma 8 in [135], and Assumption 9.3 of user arrival uni-
formness, we have that for all

t ≥ T0 ≜ 16u log(u
δ
)+4umax{ 8d

λ̃x(
γ1
4 − ϵ∗

√
1

2λ̃x
)2

log(u
δ
),
16

λ̃2
x

log( 8d
λ̃2
xδ
)} ,

(A.137)
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with probability at least 1−δ, condition in Eq.(A.136) is satisfied.
Therefore we have that for all t ≥ T0, with probability ≥ 1−3δ:∥∥∥θ̂i,t − θj(i)

∥∥∥
2
<

γ1
4
, ∀i ∈ U . (A.138)

Next, we show that with Eq.(A.325), we can get that the
RCLUMB keeps a “good partition”. First, if we delete the edge
(i, l), then user i and user j belong to different ground-truth clus-
ters, i.e., ‖θi − θl‖2 > 0. This is because by the deletion rule
of the algorithm, the concentration bound, and triangle inequal-
ity, ‖θi − θl‖2 =

∥∥θj(i) − θj(l)
∥∥
2
≥
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
−
∥∥θj(l) − θl,t

∥∥
2
−∥∥θj(i) − θi,t

∥∥
2
> 0. Second, we show that if ‖θi − θl‖ ≥ γ1 >

2ϵ∗
√

2
λ̃x
, the RCLUMB algorithm will delete the edge (i, l). This

is because if ‖θi − θl‖ ≥ γ1, then by the triangle inequality, and∥∥∥θ̂i,t − θj(i)
∥∥∥
2
< γ1

4 ,
∥∥∥θ̂l,t − θj(l)

∥∥∥
2
< γ1

4 , θi = θj(i), θl = θj(l), we

have
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
≥ ‖θi − θl‖ −

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
−
∥∥∥θ̂l,t − θj(l)

∥∥∥
2
>

γ1−γ1
4 −

γ1
4 = γ1

2 >
√
λ+

√
2 log(uδ )+d log(1+Ti,t

λd )√
λ+2λ̃xTi,t

+ϵ∗
√

1
2λ̃x

+
√
λ+

√
2 log(uδ )+d log(1+Tl,t

λd )√
λ+2λ̃xTl,t

+

ϵ∗
√

1
2λ̃x

, which will trigger the deletion condition Line 10 in Algo.7.
From the above reasoning, we can get that at round t, any

user within V t is ζ-close to it, and all the users belonging to Vj(i)

are contained in V t, which means the algorithm has done a “good
partition” at t by Definition 5.4.

A.3.9 Proof of Lemma 6.4.2

We prove the result in two situations: when V t ∈ V and when
V t /∈ V .

(1) Situation 1: for any t ≥ T0 and V t ∈ V , which means that
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the current user it is clustered completely correctly, i.e., V t =

Vj(it), therefore θl = θit, ∀l ∈ V t, then we have:

θ̂V t,t−1 − θit = (
∑
s∈[t−1]

is∈V t

xas x
>
as
+ λI)−1(

∑
s∈[t−1]

is∈V t

xasrs)− θit

= (
∑
s∈[t−1]

is∈V t

xas x
>
as
+ λI)−1

( ∑
s∈[t−1]

is∈V t

xas(x
>
as
θis + ϵis,sas

+ ηs)

)
− θit

= (
∑
s∈[t−1]

is∈V t

xas x
>
as
+ λI)−1

( ∑
s∈[t−1]

is∈V t

xas(x
>
as
θit + ϵis,sas

+ ηs)

)
− θit

= (
∑
s∈[t−1]

is∈V t

xas x
>
as
+ λI)−1[(

∑
s∈[t−1]

is∈V t

xasx
>
as
+ λI)θit − λθit

+
∑
s∈[t−1]

is∈V t

xasϵ
is,s
as

+
∑
s∈[t−1]

is∈V t

xasηs]− θit

= −λM−1
V t,t−1θit +

∑
s∈[t−1]

is∈V t

M
−1
V t,t−1xasϵ

is,s
as

+
∑
s∈[t−1]

is∈V t

M
−1
V t,t−1xasηs .

Therefore we have∣∣∣x>a (θ̂V t,t−1 − θit)
∣∣∣ ≤ λ

∣∣∣x>aM−1
V t,t−1θit

∣∣∣+
∣∣∣∣∣∣∣
∑
s∈[t−1]

is∈V t

x>aM
−1
V t,t−1xasϵ

is,s
as

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣x>aM
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasηs

∣∣∣∣∣∣∣ . (A.139)

Next, we bound the three terms in Eq.(A.139). For the first
term:

λ
∣∣∣x>aM−1

V t,t−1θit

∣∣∣ ≤ λ ‖xa‖M−1

V t,t−1

√
λmax(M

−1
V t,t−1) ‖θit‖2 ≤

√
λ ‖xa‖M−1

V t,t−1
,

(A.140)
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where we use the inequality of matrix norm, the Cauchy–Schwarz
inequality, ‖θit‖2 ≤ 1, and the fact that λmax(M

−1
V t,t−1) =

1
λmin(MV t,t−1)

≤
1
λ .

For the second term in Eq.(A.139):∣∣∣∣∣∣∣
∑
s∈[t−1]

is∈V t

x>aM
−1
V t,t−1xasϵ

is,s
as

∣∣∣∣∣∣∣ ≤
∑
s∈[t−1]

is∈V t

∣∣∣x>aM−1
V t,t−1xasϵ

is,s
as

∣∣∣
≤
∑
s∈[t−1]

is∈V t

∥∥ϵis,sas

∥∥
∞

∣∣∣x>aM−1
V t,t−1xas

∣∣∣
≤ ϵ∗

∑
s∈[t−1]

is∈V t

∣∣∣x>aM−1
V t,t−1xas

∣∣∣ , (A.141)

where in the second inequality we use the Holder’s inequality.
For the last term, with probability at least 1− δ:∣∣∣∣∣∣∣x>aM

−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasηs

∣∣∣∣∣∣∣ ≤ ‖xa‖M−1

V t,t−1

∥∥∥∥∥∥∥
∑
s∈[t−1]

is∈V t

xasηs

∥∥∥∥∥∥∥
M

−1

V t,t−1

(A.142)

≤ ‖xa‖M−1

V t,t−1

√
2 log(1

δ
) + log(

det(MV t,t−1)

det(λI) )

≤ ‖xa‖M−1

V t,t−1

√
2 log(1

δ
) + d log(1 + T

λd
) ,

(A.143)

where the second inequality follows by Theorem 1 in [43], Eq.(A.143)

is because det(MV t,t−1) ≤

(
trace(λI+

∑
s∈[t]

is∈V t

xasx
⊤
as)

d

)d

≤
(λd+TV t,t

d

)d ≤(
λd+T

d

)d, and det(λI) = λd.
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Plugging Eq.(A.140), Eq.(A.141) and Eq.(A.143) into Eq.(A.139),
we can prove Lemma 6.4.2 in situation 1, i.e., for any t ≥ T0 and
V t ∈ V , with probability at least 1− δ:∣∣∣x>a (θ̂V t,t−1 − θit)

∣∣∣ ≤ ϵ∗
∑
s∈[t−1]

is∈V t

∣∣∣x>aM−1
V t,t−1xas

∣∣∣
+ ‖xa‖M−1

V t,t−1

(√
λ+

√
2 log(1

δ
) + d log(1 + T

λd
)

)
.

(A.144)

(2) Situation 2: for any t ≥ T0 and V t /∈ V , which means
that the current user is misclustered by the algorithm, i.e., V t 6=
Vj(it), but with Lemma A.3.2, with probability at least 1 − 3δ,
the current partition is a “good partition”, i.e., ‖θl − θit‖2 ≤
2ϵ∗
√

2
λ̃x
, ∀l ∈ V t, we have:

θ̂V t,t−1 − θit

= (
∑

s∈[t−1]

is∈V t

xas x⊤
as + λI)−1(

∑
s∈[t−1]

is∈V t

xasrs)− θit

= (
∑

s∈[t−1]
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Thus, with Lemma 5.4.4 and with the previous reasoning, with
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probability at least 1− 5δ, we have:∣∣∣x⊤
a (θ̂V t,t−1 − θit)

∣∣∣
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∑

s∈[t−1]

is∈V t

x⊤
a M

−1
V t,t−1xasϵ

is,s
as

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣x

⊤
a M

−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasηs

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣x
⊤
a M

−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as(θis − θit)

∣∣∣∣∣∣∣∣
≤ ϵ∗

∑
s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1
V t,t−1xas

∣∣∣+ ‖xa‖M−1

V t,t−1

(√
λ+

√
2 log(1

δ
) + d log(1 + T

λd
)

)

+
ϵ∗
√
2d

λ̃
3
2
x
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Therefore, combining situation 1 and situation 2, the result of
Lemma 6.4.2 then follows.

A.3.10 Technical Lemmas and Their Proofs

We first prove the following technical lemma which is used to
prove Lemma A.3.2.

Lemma A.3.3. Under Assumption 9.4, at any time t, for any
fixed unit vector θ ∈ Rd

Et[(θ
>xat)

2| |At|] ≥ λ̃x ≜
∫ λx

0

(1− e−
(λx−x)2

2σ2 )Cdx . (A.145)

Proof. The proof of this lemma mainly follows the proof of Claim
1 in [46], but with more careful analysis, since their assumption
is more stringent than ours.

Denote the feasible arms at round t byAt = {xt,1,xt,2, . . . ,xt,|At|}.
Consider the corresponding i.i.d. random variables θi = (θ>xt,i)

2−
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Et[(θ
>xt,i)

2| |At|], i = 1, 2, . . . , |At|. By Assumption 9.4, θi s are
sub-Gaussian random variables with variance bounded by σ2.
Therefore, we have that for any α > 0 and any i ∈ [|At|]:

Pt(θi < −α| |At|) ≤ e−
α2

2σ2 ,

where Pt(·) is the shorthand for the conditional probability
P(·|(i1,A1, r1), . . . , (it−1,At−1, rt−1), it).

We also have that Et[(θ
>xt,i)

2| |At| = Et[θ
>xt,ix

>
t,iθ| |At|] ≥

λmin(Ex∼ρ[xx
>]) ≥ λx by Assumption 9.4. With the above in-

equalities, we can get

Pt( min
i=1,...,|At|

(θ>xt,i)
2 ≥ λx − α| |At|) ≥ (1− e−

α2

2σ2 )C ,

where C is the upper bound of |At|.
Therefore, we have

Et[(θ
>xat)

2| |At|] ≥ Et[ min
i=1,...,|At|

(θ>xt,i)
2| |At|]

≥
∫ ∞
0

Pt( min
i=1,...,|At|

(θ>xt,i)
2 ≥ x| |At|)dx

≥
∫ λx

0

(1− e−
(λx−x)2

2σ2 )Cdx ≜ λ̃x

Finally, we prove the following lemma which is used in the
proof of Theorem 6.4.3.

Lemma A.3.4.
T∑

t=T0+1

min{. ‖xat‖
2

M
−1

Vj,t−1
, 1} ≤ 2d log(1+ T

λd
), ∀j ∈ [m] . (A.146)
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Proof.

det(MVj ,T ) = det
(
MVj ,T−1 + I{iT ∈ Vj}xaTx

>
aT

)
= det(MVj ,T−1)det

(
I + I{iT ∈ Vj}M

− 1
2
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>
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− 1

2
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)
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−1
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)
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1 + I{it ∈ Vj} ‖xat‖

2
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−1

Vj,t−1

)

≥ det(λI)
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2
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−1

Vj,t−1

)
.

(A.147)

∀x ∈ [0, 1], we have x ≤ 2 log(1 + x). Therefore
T∑

t=T0+1

min{I{it ∈ Vj} ‖xat‖
2

M
−1

Vj,t−1
, 1}

≤ 2
T∑

t=T0+1

log
(
1 + I{it ∈ Vj} ‖xat‖

2

M
−1

Vj,t−1

)

= 2 log
( T∏

t=T0+1

(
1 + I{it ∈ Vj} ‖xat‖

2

M
−1

Vj,t−1

))
≤ 2[log(det(MVj ,T ))− log(det(λI))]

≤ 2 log
(trace(λI +

∑T
t=1 I{it ∈ Vj}xatx

>
at
)

λd

)d

≤ 2d log(1 + T

λd
) . (A.148)
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A.3.11 Algorithms of RSCLUMB

This section introduces the Robust Set-based Clustering of Mis-
specified Bandits Algorithm (RSCLUMB). Unlike RCLUMB, which
maintains a graph-based clustering structure, RSCLUMB main-
tains a set-based clustering structure. Besides, RCLUMB only
splits clusters during the learning process, while RSCLUMB al-
lows both split and merge operations. A brief illustration is that
the agent will split a user out of its current set(cluster) if it finds
an inconsistency between the user and its set, and if there are two
clusters whose estimated preferences are close enough, the agent
will merge them. A detailed discussion of the connection between
the graph structure and the set structure can be found in [136].

Now we introduce the details of RSCLUMB. The algorithm
first initializes a single set S1 containing all users and updates it
during the learning process. The whole learning process consists
of phases (Algo. 15 Line 3), where the s − th phase contains 2s

rounds. At the beginning of each phase, the agent marks all users
as ”unchecked”, and if a user comes later, it will be marked as
”checked”. If all users in a cluster are checked, then this cluster
will be marked as ”checked” meaning it is an accurate cluster
in the current phase. With this mechanism, every phase can
maintain an accuracy level, and the agent can put the accurate
clusters aside and focus on exploring the inaccurate ones. For
each cluster Vj, the algorithm maintains two estimated vectors
θ̂Vj

and θ̃Vj
, where the θ̂Vj

is similar to the θ̂V j
in RCLUMB and

is used for the recommendation, while the θ̃Vj
is the average of all

the estimated user preference vectors in this cluster and is used
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for the split and merge operations.
At time t in phase s, the user iτ comes with the item set Dτ ,

where τ represents the index of total time steps. Then the algo-
rithm determines the cluster and makes a cluster-based recom-
mendation. This process is similar to RCLUMB. After updating
the information (Algo. 15 Line12), the agent checks if a split or
a merge is possible (Algo. 15 Line13-17).

By our assumption, users in the same cluster have the same
vectors. So a cluster can be regarded as a good cluster only
when all the estimated user vectors are close to the estimated
cluster vector. We call a user is consistent with the cluster if
their estimated vectors are close enough. If a user is inconsistent
with its current cluster, the agent will split it out. Two clusters
are consistent when their estimated vectors are close, and the
agent will merge them.

RSCLUMB maintains two sets of estimated cluster vectors: (i)
cluster-level estimation with integrated user information, which
is for recommendations (Line 12 and Line 10 in Algo.15); (ii)
the average of estimated user vectors, which is used for robust
clustering (Line 3 in Algo.16 and Line 2 in Algo.17). The previous
set-based CB work [136] only uses (i) for both recommendations
and clustering, which would lead to erroneous clustering under
misspecifications, and cannot get any non-vacuous regret bound
in CBMUM.

A.3.12 Main Theorem and Lemmas of RSCLUMB
Theorem A.3.5 (main result on regret bound for RSCLUMB).
With the same assumptions in Theorem 6.4.3, the expected regret
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of the RSCLUMB algorithm for T rounds satisfies:

R(T ) ≤ O

(
u

(
d

λ̃x(γ1 − ζ1)2
+

1

λ̃2
x

)
logT +

ϵ∗
√
dT

λ̃1.5
x

+ ϵ∗T
√
md logT + d

√
mT logT + ϵ∗

√
1

λ̃x

T

)
(A.149)

≤ O(ϵ∗T
√

md logT + d
√
mT logT ) (A.150)

Lemma A.3.6. For RSCLUMB, we use T1 to represent the cor-
responding T0 of RCLUMB. Then :

T1 ≜ 16u log(u
δ
) + 4umax{16

λ̃2
x

log( 8d
λ̃2
xδ
),

8d

λ̃x(
γ1
6 − ϵ∗

√
1
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)2

log(u
δ
)}

= O

(
u

(
d

λ̃x(γ1 − ζ1)2
+

1

λ̃2
x

)
log 1

δ

)
Lemma A.3.7. For RSCLUMB, after 2T1 + 1 rounds: in each
phase, after the first u rounds, with probability at least 1− 5δ:∣∣∣x>a (θit − θ̂V t,t−1)

∣∣∣
≤ (

3ϵ∗
√
2d

2λ̃
3
2
x

+ 6ϵ∗

√
1

2λ̃x

)I{V t /∈ V }+ β ‖xa‖M−1
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+ ϵ∗
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is∈V t

∣∣∣x>aM−1
V t,t−1xas

∣∣∣
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3ϵ∗
√
2d

2λ̃
3
2
x

+ 6ϵ∗

√
1

2λ̃x

)I{V t /∈ V }+ Ca,t

A.3.13 Proof of Lemma A.3.7
|xT

a (θi − θ̂V t,t
)| = |xT

a (θi − θVt
)|+ |xT

a (θ̂V t,t
− θVt

)|

≤
∥∥xT

a

∥∥ ‖θi − θVt
‖+ |xT

a (θ̂V t,t
− θVt

)|

≤ 6ϵ∗

√
1

2λ̃x

+ |xT
a (θ̂V t,t

− θVt
)|

(A.151)
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where the last inequality holds due to the fact ‖xa‖ ≤ 1 and the
condition of ”split” and ”merge”. For |xT

a (θ̂V t,t
− θVt

)|:

θ̂V t,t−1 − θVt

= (
∑
s∈[t−1]

is∈V t

xas x
>
as
+ λI)−1(

∑
s∈[t−1]

is∈V t

xasrs)− θVt

= (
∑
s∈[t−1]

is∈V t

xas x
>
as
+ λI)−1

( ∑
s∈[t−1]

is∈V t

xas(x
>
as
θis + ϵis,sas

+ ηs)

)
− θVt

= M
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasϵ
is,s
as

+M
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasηs +M
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasx
>
as
θis − θVt

= M
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasϵ
is,s
as

+M
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasηs +M
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasx
>
as
(θis − θVt

)

+M
−1
V t,t−1(

∑
s∈[t−1]

is∈V t

xasx
>
as
+ λI)θVt

− λM
−1
V t,t−1θVt

− θVt

= M
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasϵ
is,s
as

+M
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasηs +M
−1
V t,t−1

∑
s∈[t−1]

is∈V t

xasx
>
as
(θis − θVt

)

− λM
−1
V t,t−1θVt

.

Thus, with the same method in Lemma 5.4.4 but replace ζ =

4ϵ∗
√

1
2λ̃x

with ζ1 = 6ϵ∗
√

1
2λ̃x

, and with the previous reasoning,
with probability at least 1− 5δ, we have:

|xT
a (θ̂V t,t

− θVt
)| ≤ Cat +

3ϵ∗
√
2d

2λ̃
3
2
x

(A.152)

The lemma can be concluded.
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A.3.14 Proof of Lemma A.3.6

With the analysis in the proof of Lemma A.3.2, with probability
at least 1− δ:∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤

β(Ti,t,
δ
u) + ϵ∗

√
Ti,t√

λ+ λmin(Mi,t)
, ∀i ∈ U , (A.153)

and the estimated error of the current cluster
∥∥∥θ̃j(i) − θj(i)

∥∥∥ also
satisfies this inequality. For set-based clustering structure, to
ensure for each user there is only one ζ-close cluster, we let:

β(Ti,t,
δ
u) + ϵ∗

√
Ti,t√

λ+ λmin(Mi,t)
≤ γ1

6
(A.154)

By assuming λ < 2 log(uδ ) + d log(1 + Ti,t

λd ), we can simplify it to

2 log(uδ ) + d log(1 + Ti,t

λd )

2λ̃xTi,t

<
1

4
(
γ1
6
− ϵ∗

√
1

2λ̃x

)2 (A.155)

which can be proved by 2 log( u
δ)

2λ̃xTi,t
≤ 1

8(
γ1
6 −ϵ∗

√
1

2λ̃x
)2 and d log(1+Ti,t

λd )

2λ̃xTi,t
≤

1
8(

γ1
6 − ϵ∗

√
1

2λ̃x
)2. It’s obvious that the former one can be satis-

fied by Ti,t ≥ 8 log(u/δ)
λ̃x(

γ1
6 −ϵ∗
√

1/2λ̃x)2
. As for the latter one, by [135]

Lemma 9, we can get Ti,t ≥
8d log( 16

λ̃xλ(
γ1
6 −ϵ∗

√
1/2λ̃x)2

4λ̃x(
γ1
6 −ϵ∗
√

1/2λ̃x)2
. By assuming

u
δ ≥

16

4λ̃xλ(
γ1
6 −ϵ∗
√

2/4λ̃x)2
, the lemma is proved.

A.3.15 Proof of Theorem A.3.5

After 2T1 rounds,in each phase, at most u times split operations
will happen, we use u log(T ) to bound the regret generated in
these rounds. Then in the remained rounds the cluster num will
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be no more than m.
For the instantaneous regret Rt at round t, with probability at
least 1− 2δ for some δ ∈ (0, 12):

Rt = (xT
a∗t
θit + ϵit,ta∗t

)− (xT
at
θit + ϵit,tat

)

= x>a∗t (θit − θ̂V t,t−1) + (x>a∗t θ̂V t,t−1 + Ca∗t ,t)− (x>atθ̂V t,t−1 + Cat,t)

+ x>at(θ̂V t,t−1 − θit) + Cat,t − Ca∗t ,t + (ϵit,ta∗t
− ϵit,tat

)

≤ 2Cat + 2ϵ∗ + (12ϵ∗

√
1

2λ̃x

+
3ϵ∗
√
2d

λ̃
3
2
x

)I(V t /∈ V )

(A.156)
where the last inequality holds due to the UCB arm selection
strategy, the concentration bound given in LemmaA.3.7 and the
fact that

∥∥ϵi,t∥∥∞ ≤ ϵ∗.
Define such events. Let:

E2 = {All clusters V t only contain users who satisfy∥∥∥θ̃i − θ̃V t

∥∥∥ ≤ α1(

√
1 + log(1 + Ti,t)

1 + Ti,t
+

√
1 + log(1 + TV t,t

)

1 + TV t,t

) + α2ϵ∗}

(A.157)

E3 = {rt ≤ 2Cat + 2ϵ∗ + 12ϵ∗

√
1

2λ̃x

+
3ϵ∗
√
2d

λ̃
3
2
x

}

E ′
= E2 ∩ E3

From previous analysis, we can know that P(E2) ≥ 1 − 3δ and
P(E3) ≥ 1 − 2δ, thus P(E ′ ≥ 1 − 5δ). By taking δ = 1

T , we can
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get:

E(Rt) = P (E)I{E}Rt + P (Ē)I{Ē}Rt

≤ I{E}Rt + 5

≤ 2T1 + 2ϵ∗T + (12ϵ∗

√
1

2λ̃x

+
3ϵ∗
√
2d

λ̃
3
2
x

)T + 2
T∑
2T1

Cat + 5

(A.158)
Now we need to bound 2

∑T
2T1

Cat. We already know that after
2T1 rounds, in each phase k after the first u rounds,there will be
at most m clusters
Consider phase k, for simplicity, ignore the fist u rounds. For the
first term in Cat:

Tk∑
t=Tk−1

‖xat‖
−1
MV t,t−1

=

Tk∑
t=Tk−1

mt∑
j=1

I{i ∈ V t,j} ‖xat‖M−1

V t,j

≤
mt∑
j=1

√√√√ Tk∑
t=Tk−1

I{i ∈ Vt,j}
Tk∑

t=Tk−1

I{i ∈ Vt,j} ‖xat‖
2
M−1

V t,j

≤
mt∑
j=1

√
2Tk,jd log(1 +

T

λd
)

≤
√
2m(Tk − Tk−1)d log(1 +

T

λd
)

(A.159)
For all phases:

s∑
k=1

√
2m(Tk+1 − Tk)d log(1 +

T

λd
) ≤

√√√√2
s∑

k=1

1
s∑

k=1

(Tk+1 − Tk)md log(1 + T

λd
)

≤
√

2mdT log(T ) log(1 + T

λd
)

(A.160)
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Similarly, for the second term in Cat:
Tk∑

t=Tk−1

∑
s∈[t−1]

is∈V t

ϵ∗|xT
at
M
−1
V t,t−1

xas|

=

Tk∑
t=Tk−1

mt∑
j=1

I{i ∈ V t,j}
∑
s∈[t−1]

is∈V t,j

ϵ∗|xT
at
M

V
−1

t,j
xas|

≤ ϵ∗

Tk∑
t=Tk−1

mt∑
j=1

I{i ∈ V t,j}
√√√√∑

s∈[t−1]

is∈V t,j

1
∑
s∈[t−1]

is∈V t,j

|xT
at
M

V
−1

t,j
xas|2

≤ ϵ∗

Tk∑
t=Tk−1

mt∑
j=1

I{i ∈ V t,j}
√

Tk,j ‖xat‖
2

M
−1

V t,j

≤ ϵ∗

Tk∑
t=Tk−1

√√√√ mt∑
j=1

I{i ∈ V t,j}
mt∑
j=1

I{i ∈ V t,j}Tk,j ‖xat‖
2

M
−1

V t,j

≤ ϵ∗
√
(Tk − Tk−1)

Tk∑
t=Tk−1

√√√√ mt∑
j=1

I{i ∈ V t,j} ‖xat‖
2

M
−1

V t,j

≤ ϵ∗(Tk − Tk−1)

√
2md log(1 + T

λd
)

Then for all phases this term can be bounded by ϵ∗T
√

2md log(1 + T
λd).

Thus the total regret can be bounded by:

Rt ≤ 2

√
2mTd log(T ) log(1 + T

λd
)(

√
2 log(T ) + d log(1 + T

λd
) + 2

√
λ)

+ 2ϵ∗T

√
2md log(1 + T

λd
) + 2ϵ∗T + 12ϵ∗

√
1

2λ̃x

T +
3ϵ∗
√
2d

λ̃
3
2
x

T + 2T1 + u log(T ) + 5

where T1 = 16u log(uδ )+4umax{ 16
λ̃2
x

log( 8d
λ̃2
xδ
), 8d

λ̃x(
γ1
6 −ϵ∗

√
1

2λ̃x
)2
log(uδ )}
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Figure A.1: The cumulative regret of the algorithms under different scales
of misspecification level.

A.3.16 More Experiments

For ablation study, we test our algorithms’ performance under
different scales of deviation. We test RCLUMB and RSCLUMB
when ϵ∗ = 0.05, 0.1, 0.2, 0.3 and 0.4 in both misspecification level
known and unknown cases. In the known case, we set ϵ∗ according
to the real misspecification level, and we compare our algorithms’
performance to the baselines except LinUCB and CW-OFUL
which perform worst; in the unknown case, we keep ϵ∗ = 0.2,
and we compare our algorithms to RLinUCB-Ind as only it has
the pre-spicified parameter ϵ∗ among the baselines. The results
are shown in Fig.A.1. We plot each algorithm’s final cumulative
regret under different misspecification levels. All the algorithms’
performances get worse when the deviation gets larger, and our
two algorithms always perform better than the baselines. Besides,
the regrets in the unknown case are only slightly larger than the
known case. These results can match our theoretical results and
again show our algorithms’ effectiveness, as well as verify that our
algorithm can handle the unknown misspecification level.
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Algorithm 15 Robust Set-based Clustering of Misspecified Bandits Algo-
rithm (RSCLUMB)

1: Input: Deletion parameter α1, α2 > 0, f(T ) =
√

1+ln(1+T )
1+T

, λ, β, ϵ∗ > 0.
2: Initialization:

• Mi,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0 , ∀i ∈ U ;

• Initialize the set of cluster indexes by J = {1} and the single cluster
S1 by M1 = 0d×d, b1 = 0d×1, T1 = 0, C1 = U , j(i) = 1, ∀i.

3: for all s = 1, 2, . . . do
4: Mark every user unchecked for each cluster.
5: For each cluster Vj, compute T̃Vj

= TVj
, θ̂Vj

= (λI +MVj
)−1bVj

, θ̃Vj
=∑

i∈Vj
θ̂i

[Vj ]

6: for all t = 1, 2, . . . , T do
7: Compute τ = 2s − 2 + t

8: Receive the user iτ and the decision set Dτ

9: Determine the cluster index j = j(iτ )

10: Recommend item aτ with the largest UCB index as shown in Eq. (6.3)

11: Received the feedback rτ .
12: Update the information:

Miτ ,τ = Miτ ,τ−1 + xaτx
T
aτ , biτ ,τ = biτ ,τ−1 + rτxaτ ,

Tiτ,τ = Tiτ ,τ−1 + 1, θ̂iτ ,τ = (λI +Miτ ,τ )
−1biτ ,τ

MVj ,τ = MVj ,τ−1 + xaτx
T
aτ , bVj ,τ = bVj ,τ−1 + rτxτ ,

TVj ,τ = TVj ,τ−1 + 1, θ̂Vj ,τ = (λI +MVj ,τ )
−1bVj ,τ ,

θ̃Vj ,τ =

∑
i∈Vj

θ̂i, τ

[Vj]

13: if iτ is unchecked then
14: Run Split
15: Mark user iτ has been checked
16: Run Merge
17: end if
18: end for
19: end for
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Algorithm 16 Split

1: Define F (T ) =
√

1+ln(1+T )
1+T

2: if
∥∥∥θ̂iτ ,τ − θ̃Vj ,τ

∥∥∥ > α1(F (Tiτ ,τ ) + F (TVj ,τ )) + α2ϵ∗ then
3: Split user iτ from cluster Vj and form a new cluster V ′

j of user iτ

MVj ,τ = MVj ,τ −Miτ ,τ , bVj
= bVj

− biτ ,τ ,

TVj ,τ = TVj ,τ − Tiτ ,τ , Cj,τ = Cj,τ − {iτ},
MV ′

j ,τ
= Miτ ,τ , bV ′

j ,τ
= biτ ,τ ,

TV ′
j ,τ

= Tiτ ,τ , Cj′,τ = {iτ}

4: end if

Algorithm 17 Merge
1: for any two checked clustersVj1 , Vj2 satisfying∥∥∥θ̃j1 − θ̃j2

∥∥∥ <
α1

2
(F (TVj1

) + F (TVj2
)) +

α2

2
ϵ∗

do
2: Merge them:

MVj1
= Mj1 +Mj2 , bVj1

= bVj1
+ bVj2

,

TVj1
= TVj1

+ TVj2
, CVj1

= CVj1
∪ CVj2

3: Set j(i) = j1, ∀i ∈ j2, delete Vj2

4: end for
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A.4 Appendix for chapter 6

A.4.1 Proof of Lemma A.3.2

We first prove the following result:
With probability at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T ]:∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤

β(Ti,t,
δ
u)√

λ+ λmin(Mi,t)
, ∀i ∈ U , (A.161)

where β(Ti,t,
δ
u) ≜

√
2 log(uδ ) + d log(1 + Ti,t

λd ) +
√
λ+ αC.

θ̂i,t − θj(i) = (λI +Mi,t)
−1bi,t − θj(i)

= (λI +
∑
s∈[t]
is=i

wis,sxasx
>
as
)−1
∑
s∈[t]
is=i

wis,sxasrs − θj(i)

= (λI +
∑
s∈[t]
is=i

wis,sxasx
>
as
)−1
(∑

s∈[t]
is=i

wis,sxas(x
>
as
θis + ηs + cs)

)
− θj(i)

= (λI +
∑
s∈[t]
is=i

wis,sxasx
>
as
)−1
[
(λI +

∑
s∈[t]
is=i

wis,sxasx
>
as
)θj(i) − λθj(i)

+
∑
s∈[t]
is=i

wis,sxasηs +
∑
s∈[t]
is=i

wis,sxascs

]
− θj(i)

= −λM ′−1
i,t θj(i) +M ′−1

i,t

∑
s∈[t]
is=i

wis,sxasηs +M ′−1
i,t

∑
s∈[t]
is=i

wis,sxascs ,

where we denote M ′
i,t = Mi,t+λI, and the above equations hold

by definition.
Therefore, we have∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤ λ

∥∥∥M ′−1
i,t θj(i)

∥∥∥
2
+

∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxasηs

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxascs

∥∥∥∥∥∥∥
2

.

(A.162)
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We then bound the three terms in Eq.(A.162) one by one. For
the first term:

λ
∥∥∥M ′−1

i,t θj(i)
∥∥∥
2
≤ λ

∥∥∥M ′− 1
2

i,t

∥∥∥2
2

∥∥∥θj(i)
∥∥∥
2
≤

√
λ√

λmin(M ′
i,t)

, (A.163)

where we use the Cauchy–Schwarz inequality, the inequality for
the operator norm of matrices, and the fact that λmin(M

′
i,t) ≥ λ.

For the second term in Eq.(A.162), we have∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxasηs

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥M ′− 1
2

i,t

∑
s∈[t]
is=i

wis,sxasηs

∥∥∥∥∥∥∥
2

∥∥∥M ′− 1
2

i,t

∥∥∥
2

(A.164)

=

∥∥∥∑ s∈[t]
is=i

wis,sxasηs

∥∥∥
M ′−1

i,t√
λmin(M ′

i,t)
, (A.165)

where Eq.(A.164) follows by the Cauchy–Schwarz inequality and
the inequality for the operator norm of matrices, and Eq.(A.165)
follows by the Courant-Fischer theorem.

Let x̃s ≜ √wis,sxas, η̃s ≜ √wis,sηs, then we have: ‖x̃s‖2 ≤∥∥√wis,s

∥∥
2
‖xas‖2 ≤ 1, η̃s is still 1-sub-gaussian (since ηs is 1-

sub-gaussian and √wis,s ≤ 1), M ′
i,t = λI +

∑
s∈[t]
is=i

x̃sx̃
>
s , and

the nominator in Eq.(A.165) becomes
∥∥∥∑ s∈[t]

is=i
x̃sη̃s

∥∥∥
M ′−1

i,t

. Then,

following Theorem 1 in [43] and by union bound, with probability
at least 1− δ for some δ ∈ (0, 1), for any i ∈ U , we have:∥∥∥∥∥∥∥

∑
s∈[t]
is=i

wis,sxasηs

∥∥∥∥∥∥∥
M ′−1

i,t

=

∥∥∥∥∥∥∥
∑
s∈[t]
is=i

x̃sη̃s

∥∥∥∥∥∥∥
M ′−1

i,t
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≤

√
2 log(u

δ
) + log(

det(M ′
i,t)

det(λI) )

≤
√

2 log(u
δ
) + d log(1 + Ti,t

λd
) , (A.166)

where det(·) denotes the determinant of matrix arguement, Eq.(A.166)

is because det(M ′
i,t) ≤

(
trace(λI+

∑
s∈[t]
is=i

wis,sxasx
⊤
as)

d

)d

≤
(λd+Ti,t

d

)d,
and det(λI) = λd.

For the third term in Eq.(A.162), we have∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxascs

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥M ′− 1
2

i,t

∑
s∈[t]
is=i

wis,sxascs

∥∥∥∥∥∥∥
2

∥∥∥M ′− 1
2

i,t

∥∥∥
2

(A.167)

=

∥∥∥∑ s∈[t]
is=i

wis,sxascs

∥∥∥
M ′−1

i,t√
λmin(M ′

i,t)
(A.168)

≤

∑
s∈[t]
is=i
|cs|wi,s ‖xas‖M ′−1

i,t√
λmin(M ′

i,t)

≤ αC√
λmin(M ′

i,t)
(A.169)

where Eq.(A.167) follows by the Cauchy–Schwarz inequality and
the inequality for the operator norm of matrices, Eq.(A.168) fol-
lows by the Courant-Fischer theorem, and Eq.(A.169) is because
by definition wi,s ≤ α

‖xas‖M ′−1
i,s

≤ α
‖xas‖M ′−1

i,t

(since M ′
i,t � M ′

i,s,

M ′−1
i,s �M ′−1

i,t , ‖xas‖M ′−1
i,s
≥ ‖xas‖M ′−1

i,t
),
∑T

t=1 |ct| ≤ C.
Combining the above bounds of these three terms, we can get
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that Eq.(A.161) holds.
We then prove the following technical lemma.

Lemma A.4.1. Under Assumption 9.4, at any time t, for any
fixed unit vector θ ∈ Rd

Et[(θ
>xat)

2| |At|] ≥ λ̃x ≜
∫ λx

0

(1− e−
(λx−x)2

2σ2 )Kdx , (A.170)

where K is the upper bound of |At| for any t.

Proof. The proof of this lemma mainly follows the proof of Claim
1 in [46], but with more careful analysis, since their assumption
on the arm generation distribution is more stringent than our As-
sumption 9.4 by putting more restrictions on the variance upper
bound σ2 (specifically, they require σ2 ≤ λ2

8 log(4K)).
Denote the feasible arms at round t byAt = {xt,1,xt,2, . . . ,xt,|At|}.

Consider the corresponding i.i.d. random variables θi = (θ>xt,i)
2−

Et[(θ
>xt,i)

2| |At|], i = 1, 2, . . . , |At|. By Assumption 9.4, θi s are
sub-Gaussian random variables with variance bounded by σ2.
Therefore, for any α > 0 and any i ∈ [|At|], we have:

Pt(θi < −α| |At|) ≤ e−
α2

2σ2 ,

where we use Pt(·) to be the shorthand for the conditional prob-
ability P(·|(i1,A1, r1), . . . , (it−1,At−1, rt−1), it).

By Assumption 9.4, we can also get that Et[(θ
>xt,i)

2| |At| =
Et[θ

>xt,ix
>
t,iθ| |At|] ≥ λmin(Ex∼ρ[xx

>]) ≥ λx. With these in-
equalities above, we can get

Pt( min
i=1,...,|At|

(θ>xt,i)
2 ≥ λx − α| |At|) ≥ (1− e−

α2

2σ2 )K .
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Therefore, we can get

Et[(θ
>xat)

2| |At|] ≥ Et[ min
i=1,...,|At|

(θ>xt,i)
2| |At|]

≥
∫ ∞
0

Pt( min
i=1,...,|At|

(θ>xt,i)
2 ≥ x| |At|)dx

≥
∫ λx

0

(1− e−
(λx−x)2

2σ2 )Kdx ≜ λ̃x

Note that wi,s = min{1, α
‖xas‖M ′−1

i,t

}, and we have

α

‖xas‖M ′−1
i,t

=
α√

x>asM
′−1
i,t xas

≥ α√
λmin(M

′−1
i,t )

= α
√
λmin(M ′

i,t) ≥ α
√
λ.

Since α
√
λ < 1 typically holds, we have wi,s ≥ α

√
λ.

Then, with the item regularity assumption stated in Assump-
tion 9.4, the technical Lemma A.4.1, together with Lemma 7 in
[135], with probability at least 1 − δ, for a particular user i, at
any t such that Ti,t ≥ 16

λ̃2
x

log( 8d
λ̃2
xδ
), we have:

λmin(M
′
i,t) ≥ 2α

√
λλ̃xTi,t + λ . (A.171)

With this result, together with Eq.(A.161), we can get that for
any t such that Ti,t ≥ 16

λ̃2
x

log( 8d
λ̃2
xδ
), with probability at least 1 − δ

for some δ ∈ (0, 1), ∀i ∈ U , we have:∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u)√

λmin(M ′
i,t)

≤
β(Ti,t,

δ
u)√

2α
√
λλ̃xTi,t + λ
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≤
β(Ti,t,

δ
u)√

2α
√
λλ̃xTi,t

=

√
2 log(uδ ) + d log(1 + Ti,t

λd ) +
√
λ+ αC√

2α
√
λλ̃xTi,t

.

(A.172)

Then, we want to find a sufficient time Ti,t for a fixed user i

such that ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ

4
. (A.173)

To do this, with Eq.(A.172), we can get it by letting
√
λ√

2α
√
λλ̃xTi,t

<
γ

12
, (A.174)

αC√
2α
√
λλ̃xTi,t

<
γ

12
, (A.175)

√
2 log(uδ ) + d log(1 + Ti,t

λd )√
2α
√
λλ̃xTi,t

<
γ

12
. (A.176)

For Eq.(A.174), we can get

Ti,t >
72
√
λ

αγ2λ̃x

. (A.177)

For Eq.(A.175), we can get

Ti,t >
72αC2

γ2
√
λλ̃x

. (A.178)

For Eq.(A.176), we have

2 log(uδ ) + d log(1 + Ti,t

λd )

2α
√
λλ̃xTi,t

<
γ2

144
. (A.179)
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Then it is sufficient to get Eq.(A.179) if the following holds

2 log(uδ )
2α
√
λλ̃xTi,t

<
γ2

288
, (A.180)

d log(1 + Ti,t

λd )

2α
√
λλ̃xTi,t

<
γ2

288
. (A.181)

For Eq.(A.180), we can get

Ti,t >
288 log(uδ )
γ2α
√
λλ̃x

(A.182)

For Eq.(A.181), we can get

Ti,t >
144d

γ2α
√
λλ̃x

log(1 + Ti,t

λd
) . (A.183)

Following Lemma 9 in [135], we can get the following sufficient
condition for Eq.(A.183):

Ti,t >
288d

γ2α
√
λλ̃x

log( 288

γ2α
√
λλ̃x

) . (A.184)

Then, since typically u
δ > 288

γ2α
√
λλ̃x

, we can get the following suffi-
cient condition for Eq.(A.182) and Eq.(A.184)

Ti,t >
288d

γ2α
√
λλ̃x

log(u
δ
) . (A.185)

Together with Eq.(A.177), Eq.(A.178), and the condition for Eq.(A.348)
we can get the following sufficient condition for Eq.(A.173) to hold

Ti,t > max{ 288d

γ2α
√
λλ̃x

log(u
δ
),
16

λ̃2
x

log( 8d
λ̃2
xδ
),
72
√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

} .

(A.186)
Then, with Assumption 9.3 on the uniform arrival of users, fol-
lowing Lemma 8 in [135], and by union bound, we can get that
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with probability at least 1− δ, for all

t ≥ T0 ≜ 16u log(u
δ
)+4umax{ 288d

γ2α
√
λλ̃x

log(u
δ
),
16

λ̃2
x

log( 8d
λ̃2
xδ
),
72
√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

} ,

(A.187)
Eq.(A.185) holds for all i ∈ U , and therefore Eq.(A.173) holds
for all i ∈ U . With this, we can show that RCLUB-WCU will
cluster all the users correctly after T0. First, if RCLUB-WCU
deletes the edge (i, l), then user i and user j belong to different
ground-truth clusters, i.e., ‖θi − θl‖2 > 0. This is because by the
deletion rule of the algorithm, the concentration bound, and tri-
angle inequality, ‖θi − θl‖2 =

∥∥θj(i) − θj(l)
∥∥
2
≥
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
−∥∥θj(l) − θl,t

∥∥
2
−
∥∥θj(i) − θi,t

∥∥
2
> 0. Second, we show that if

‖θi − θl‖ ≥ γ, RCLUB-WCU will delete the edge (i, l). This
is because if ‖θi − θl‖ ≥ γ, then by the triangle inequality, and∥∥∥θ̂i,t − θj(i)

∥∥∥
2
< γ

4 ,
∥∥∥θ̂l,t − θj(l)

∥∥∥
2
< γ

4 , θi = θj(i), θl = θj(l), we

have
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
≥ ‖θi − θl‖ −

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
−
∥∥∥θ̂l,t − θj(l)

∥∥∥
2
>

γ − γ
4 −

γ
4 = γ

2 >
√
λ+

√
2 log(uδ )+d log(1+Ti,t

λd )√
λ+2λ̃xTi,t

+
√
λ+

√
2 log(uδ )+d log(1+Tl,t

λd )√
λ+2λ̃xTl,t

,
which will trigger the deletion condition Line 10 in Algo.8.

A.4.2 Proof of Lemma 6.4.2

After T0, if the clustering structure is correct, i.e., Vt = Vj(it),
then we have

θ̂Vt,t−1 − θit = M−1
Vt,t−1bVt,t−1 − θit

= (λI +
∑
s∈[t−1]
is∈Vt

wis,sxasx
>
as
)−1(

∑
s∈[t−1]
is∈Vt

wis,sxasrs)− θit
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= (λI +
∑
s∈[t−1]
is∈Vt

wis,sxasx
>
as
)−1
( ∑

s∈[t−1]
is∈Vt

wis,sxas(x
>
as
θit + ηs + cs)

)
− θit

(A.188)

= (λI +
∑
s∈[t−1]
is∈Vt

wis,sxasx
>
as
)−1
( ∑

s∈[t−1]
is∈Vt

(wis,sxasx
>
as
+ λI)θit − λθit

+
∑
s∈[t−1]
is∈Vt

wis,sxasηs +
∑
s∈[t−1]
is∈Vt

wis,sxascs)

)
− θit

= −λM ′−1
Vt,t−1θit −M ′−1

Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxasηs +M ′−1
Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxascs ,

where we denote M ′
Vt,t−1 = MVt,t−1 + λI, and Eq.(A.188) is be-

cause Vt = Vj(it) thus θis = θit, ∀is ∈ Vt.
Therefore, we have∣∣∣x⊤

a (θ̂Vt,t−1 − θit)
∣∣∣

≤ λ
∣∣∣x⊤

a M
′−1
Vt,t−1θit

∣∣∣+
∣∣∣∣∣∣∣x⊤

a M
′−1
Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxasηs

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣x⊤

a M
′−1
Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxascs

∣∣∣∣∣∣∣
≤ ‖xa‖M ′−1

Vt,t−1

(√
λ+

∥∥∥∥∥∥∥
∑

s∈[t−1]
is∈Vt

wis,sxasηs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

+

∥∥∥∥∥∥∥
∑

s∈[t−1]
is∈Vt

wis,sxascs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

)
,

(A.189)

where Eq.(A.189) is by Cauchy–Schwarz inequality, matrix op-
erator inequality, and

∣∣∣x>aM ′−1
Vt,t−1θit

∣∣∣ ≤ λ
∥∥∥M ′− 1

2

Vt,t−1

∥∥∥
2
‖θit‖2 =

λ 1√
λmin(MVt,t−1)

‖θit‖2 ≤
√
λ since λmin(MVt,t−1) ≥ λ and ‖θit‖2 ≤

1.
Let x̃s ≜ √wis,sxas, η̃s ≜ √wis,sηs, then we have: ‖x̃s‖2 ≤∥∥√wis,s

∥∥
2
‖xas‖2 ≤ 1, η̃s is still 1-sub-gaussian (since ηs is 1-

sub-gaussian and √wis,s ≤ 1), M ′
i,t = λI +

∑
s∈[t]
is=i

x̃sx̃
>
s , and
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is∈Vt

wis,sxasηs

∥∥∥
M ′−1

Vt,t−1

becomes
∥∥∥∑ s∈[t]

is=i
x̃sη̃s

∥∥∥
M ′−1

Vt,t−1

. Then, fol-

lowing Theorem 1 in [43], with probability at least 1− δ for some
δ ∈ (0, 1), we have:∥∥∥∥∥∥∥

∑
s∈[t−1]
is∈Vt

wis,sxasηs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

=

∥∥∥∥∥∥∥
∑
s∈[t]
is=i

x̃sη̃s

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

≤

√
2 log(u

δ
) + log(

det(M ′
Vt,t−1)

det(λI) )

≤
√

2 log(u
δ
) + d log(1 + T

λd
) , (A.190)

And for
∥∥∥∑ s∈[t−1]

is∈Vt

wis,sxascs

∥∥∥
M ′−1

Vt,t−1

, we have

∥∥∥∥∥∥∥
∑
s∈[t−1]
is∈Vt

wis,sxascs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

≤
∑
s∈[t−1]
is∈Vt

wis,s |cs| ‖xas‖M ′−1
Vt,t−1

≤ αC ,

(A.191)

where we use
∑T

t=1 |ct| ≤ C, wis,s ≤ α
‖xas‖M ′−1

is,t−1

≤ α
‖xas‖M ′−1

Vt,t−1

.

Plugging Eq.(A.191) and Eq.(A.190) into Eq.(A.189), together
with Lemma A.3.2, we can complete the proof of Lemma 6.4.2.

A.4.3 Proof of Theorem 6.4.3

After T0, we define event

E = {the algorithm clusters all the users correctly for all t ≥ T0} .
(A.192)
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Then, with Lemma A.3.2 and picking δ = 1
T , we have

R(T ) = P(E)I{E}R(T ) + P(E)I{E}R(T )

≤ I{E}R(T ) + 4× 1

T
× T

= I{E}R(T ) + 4 .

(A.193)

Then it remains to bound I{E}R(T ). For the first T0 rounds, we
can upper bound the regret in the first T0 rounds by T0. After T0,
under event E and by Lemma 6.4.2, we have that with probability
at least 1− δ, for any xa:∣∣∣xT

a (θ̂Vt,t−1 − θit)
∣∣∣ ≤ β ‖xa‖M−1

Vt,t−1
≜ Ca,t . (A.194)

Therefore, for the instantaneous regret Rt at round t, with E ,
with probability at least 1− δ, at ∀t ≥ T0:

Rt = x>a∗tθit − x>atθit

= x>a∗t (θit − θ̂Vt,t−1) + (x>a∗t θ̂Vt,t−1 + Ca∗t ,t)− (x>atθ̂Vt,t−1 + Cat,t)

+ x>at(θ̂V t,t−1 − θit) + Cat,t − Ca∗t ,t

≤ 2Cat,t ,

(A.195)
where the last inequality holds by the UCB arm selection strategy
in Eq.(6.3) and Eq.(A.194).

Therefore, for I{E}R(T ):

I{E}R(T ) ≤ R(T0) + E[I{E}
T∑

t=T0+1

Rt]

≤ T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] . (A.196)
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Then it remains to bound E[I{E}
∑T

t=T0+1Cat,t]. For
∑T

t=T0+1Cat,t,
we can distinguish it into two cases:

T∑
t=T0+1

Cat,t ≤ β
T∑
t=1

‖xat
‖M−1

Vt,t−1

= β
∑

t∈[T ]:wit,t=1

‖xat
‖M−1

Vt,t−1
+ β

∑
t∈[T ]:wit,t<1

‖xat
‖M−1

Vt,t−1
.

(A.197)

Then, we prove the following technical lemma.

Lemma A.4.2.
T∑

t=T0+1

min{I{it ∈ Vj} ‖xat‖
2
M−1

Vj,t−1
, 1} ≤ 2d log(1 + T

λd
), ∀j ∈ [m] .

(A.198)

Proof.

det(MVj ,T ) = det

(
MVj ,T−1 + I{iT ∈ Vj}xaTx

>
aT

)
= det(MVj ,T−1)det

(
I + I{iT ∈ Vj}M

− 1
2

Vj ,T−1xaTx
>
aT
M
− 1

2

Vj ,T−1

)
= det(MVj ,T−1)

(
1 + I{iT ∈ Vj} ‖xaT‖

2
M−1

Vj,T−1

)
= det(MVj ,T0

)
T∏

t=T0+1

(
1 + I{it ∈ Vj} ‖xat‖

2
M−1

Vj,t−1

)

≥ det(λI)
T∏

t=T0+1

(
1 + I{it ∈ Vj} ‖xat‖

2
M−1

Vj,t−1

)
.

(A.199)
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∀x ∈ [0, 1], we have x ≤ 2 log(1 + x). Therefore
T∑

t=T0+1

min{I{it ∈ Vj} ‖xat‖
2
M−1

Vj,t−1
, 1}

≤ 2
T∑

t=T0+1

log
(
1 + I{it ∈ Vj} ‖xat‖

2
M−1

Vj,t−1

)

= 2 log
( T∏

t=T0+1

(
1 + I{it ∈ Vj} ‖xat‖

2
M−1

Vj,t−1

))
≤ 2[log(det(MVj ,T ))− log(det(λI))]

≤ 2 log
(
trace(λI +

∑T
t=1 I{it ∈ Vj}xatx

>
at
)

λd

)d

≤ 2d log(1 + T

λd
) . (A.200)

Denote the rounds with wit,t = 1 as {t̃1, . . . , t̃l1}, and gram
matrix G̃Vt̃τ

,t̃τ−1 ≜ λI +
∑

s∈[τ ]
is∈V

t̃τ

xat̃s
x>at̃s ; denote the rounds with

wit,t < 1 as {t′1, . . . , t′l2}, gram matrixG′Vt′τ
,t′τ−1 ≜ λI+

∑
s∈[τ ]

is∈V
t′τ

wit′s ,t
′
s
xat′s

x>at′s
.

Then we have∑
t∈[T ]:wit,t=1

‖xat
‖M−1

Vt,t−1

=
m∑
j=1

l1∑
τ=1

I{it̃τ ∈ Vj}
∥∥xat̃τ

∥∥
M−1

V
t̃τ ,t̃τ−1

≤
m∑
j=1

l1∑
τ=1

I{it̃τ ∈ Vj}
∥∥xat̃τ

∥∥
G̃−1

V
t̃τ

,t̃τ−1

(A.201)
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≤
m∑
j=1

√√√√ l1∑
τ=1

I{it̃τ ∈ Vj}
l1∑

τ=1

min{1, I{it̃τ ∈ Vj}
∥∥xat̃τ

∥∥2
G̃−1

V
t̃τ

,t̃τ−1

}

(A.202)

≤
m∑
j=1

√
TVj ,T × 2d log(1 + T

λd
) (A.203)

≤

√√√√2m
m∑
j=1

TVj ,Td log(1 +
T

λd
) =

√
2mdT log(1 + T

λd
) ,

(A.204)

where Eq.(A.201) is because G̃−1
Vt̃τ

,t̃τ−1
�M−1

Vt̃τ
,t̃τ−1

in Eq.(A.202)
we use Cauchy–Schwarz inequality, in Eq.(A.203) we use Lemma
A.4.2 and

∑l1
τ=1 I{it̃τ ∈ Vj} ≤ TVj ,T , in Eq.(A.204) we use Cauchy–

Schwarz inequality and
∑m

j=1 TVj ,T = T .
For the second part in Eq.(A.197), Let x′at′τ

≜ √
wit′τ ,t

′
τ
xat′τ

,
then

∑
t:wit,t<1

‖xat
‖M−1

Vt,t−1
=

∑
t:wit,t<1

‖xat
‖2M−1

Vt,t−1

‖xat
‖M−1

Vt,t−1

=
∑

t:wit,t<1

wit,t ‖xat
‖2M−1

Vt,t−1

α

(A.205)

=
m∑
j=1

l2∑
τ=1

I{it′τ ∈ Vj}
wit′τ ,t

′
τ

α

∥∥∥xat′τ

∥∥∥2
M−1

V
t′τ

,t′τ−1

≤
m∑
j=1

∑l2
τ=1min{1, I{it′τ ∈ Vj}

∥∥∥x′at′τ∥∥∥2G′−1
V
t′τ

,t′τ−1

}

α

(A.206)
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≤
m∑
j=1

2d log(1 + T
λd)

α
=

2md log(1 + T
λd)

α

(A.207)

where in Eq.(A.205) we use the definition of the weights, in
Eq.(A.206) we use G′−1Vt′τ

,t′τ−1 � M−1
Vt′τ

,t′τ−1, and Eq.(A.207) uses
Lemma A.4.2.

Then, with Eq.(A.207), Eq.(A.204), Eq.(A.197), Eq.(A.193),
Eq.(A.196), δ = 1

T , and β =
√
λ+
√

2 log(T ) + d log(1 + T
λd)+αC,

we can get

R(T ) ≤ 4 + T0 +
(
2
√
λ+

√
2 log(T ) + d log(1 + T

λd
) + αC

)
×
(√

2mdT log(1 + T

λd
)

+
2md log(1 + T

λd)

α

)
= 4 + 16u log(uT ) + 4umax{ 288d

γ2α
√
λλ̃x

log(uT ), 16
λ̃2
x

log(8dT
λ̃2
x

),
72
√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

}

+
(
2
√
λ+

√
2 log(T ) + d log(1 + T

λd
) + αC

)
×
(√

2mdT log(1 + T

λd
)

+
2md log(1 + T

λd)

α

)
.

Picking α =
√
λ+
√
d

C , we can get

R(T ) ≤ O
(
(
C
√
d

γ2λ̃x

+
1

λ̃2
x

)u log(T )
)
+O
(
d
√
mT log(T )

)
+O
(
mCd log1.5(T )

)
.

(A.208)
Thus we complete the proof of Theorem 6.4.3.

A.4.4 Proof and Discussions of Theorem 6.4.4

Table 1 of the work [51] gives a lower bound for linear bandits
with adversarial corruption for a single user. The lower bound
of R(T ) is given by: R(T ) ≥ Ω(d

√
T + dC). Therefore, suppose
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our problem with multiple users and m underlying clusters where
the arrival times are Ti for each cluster, then for any algorithms,
even if they know the underlying clustering structure and keep
m independent linear bandit algorithms to leverage the common
information of clusters, the best they can get is R(T ) ≥ dC +∑

i∈[m] d
√
Ti. For a special case where Ti =

T
m , ∀i ∈ [m], we can

get R(T ) ≥ dC+
∑

i∈[m] d
√

T
m = d

√
mT +dC, which gives a lower

bound of Ω(d
√
mT + dC) for the LOCUD problem.

Recall that the regret upper bound of RCLUB-WCU shown in
Theorem 6.4.3 is of O

(
(C
√
d

γ2λ̃x
+ 1

λ̃2
x

)u log(T )
)
+O

(
d
√
mT log(T )

)
+

O
(
mCd log1.5(T )

)
, asymptotically matching this lower bound with

respect to T up to logarithmic factors and with respect to C up
to O(

√
m) factors, showing the tightness of our theoretical results

(where m are typically very small for real applications).
We conjecture that the gap for the m factor in the mC term

of the lower bound is due to the strong assumption that cluster
structures are known to prove our lower bound, and whether there
exists a tighter lower bound will be left for future work.

A.4.5 Proof of Theorem 6.4.5

We prove the theorem using the proof by contrapositive. Specif-
ically, in Theorem 6.4.5, we need to prove that for any t ≥ T0,
if the detection condition in Line 7 of Algo.9 for user i, then
with probability at least 1− 5δ, user i is indeed a corrupted user.
By the proof by contrapositive, we can prove Theorem 6.4.5 by
showing that: for any t ≥ T0, if user i is a normal user, then with
probability at least 1 − 5δ, the detection condition in Line 7 of
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Algo.9 will not be satisfied for user i.
If the clustering structure is correct at t, then for any normal

user i

θ̃i,t − θ̂Vi,t,t = θ̃i,t − θi + θi − θ̂Vi,t,t , (A.209)

where θ̃i,t is the non-robust estimation of the ground-truth θi,
and θ̂Vi,t,t−1 is the robust estimation of the inferred cluster Vi,t for
user i at round t. Since the clustering structure is correct at t,
θ̂Vi,t,t−1 is the robust estimation of user i’s ground-truth cluster’s
preference vector θj(i) = θi at round t.

We have

θ̃i,t − θi = (λI + M̃i,t)
−1b̃i,t − θi

= (λI +
∑
s∈[t]
is=i

xasx
>
as
)−1(

∑
s∈[t]
is=i

xasrs)− θi

= (λI +
∑
s∈[t]
is=i

xasx
>
as
)−1
(∑

s∈[t]
is=i

xas(x
>
as
θi + ηs)

)
− θi

(A.210)

= (λI +
∑
s∈[t]
is=i

xasx
>
as
)−1
(
(λI +

∑
s∈[t]
is=i

xasx
>
as
)θi − λθi +

∑
s∈[t]
is=i

xasηs)
)
− θi

= −λM̃ ′−1
i,t θi + M̃ ′−1

i,t

∑
s∈[t]
is=i

xasηs ,

where we denote M̃ ′
i,t ≜ λI +

∑
s∈[t]
is=i

xasx
>
as
, and Eq.(A.210) is

because since user i is normal, we have cs = 0, ∀s : is = i.
Then, we have

∥∥∥θ̃i,t − θi

∥∥∥
2
≤
∥∥∥λM̃ ′−1

i,t θi

∥∥∥
2
+

∥∥∥∥∥∥∥M̃ ′−1
i,t

∑
s∈[t]
is=i

xasηs

∥∥∥∥∥∥∥
2
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≤ λ
∥∥∥M̃ ′− 1

2

i,t

∥∥∥2
2
‖θi‖2 +

∥∥∥∥∥∥∥M̃ ′− 1
2

i,t

∑
s∈[t]
is=i

xasηs

∥∥∥∥∥∥∥
2

∥∥∥M̃ ′− 1
2

i,t

∥∥∥
2

(A.211)

≤

√
λ+

∥∥∥∑ s∈[t]
is=i

xasηs

∥∥∥
M̃ ′−1

i,t√
λmin(M̃ ′

i,t)
, , (A.212)

where Eq.(A.211) follows by the Cauchy–Schwarz inequality and
the inequality for the operator norm of matrices, and Eq.(A.212)
follows by the Courant-Fischer theorem and the fact that λmin(M̃

′
i,t) ≥

λ.
Following Theorem 1 in [43], for a fixed normal user i, with

probability at least 1− δ for some δ ∈ (0, 1) we have:∥∥∥∥∥∥∥
∑
s∈[t]
is=i

xasηs

∥∥∥∥∥∥∥
M̃ ′−1

i,t

≤

√
2 log(1

δ
) + log(

det(M̃ ′
i,t)

det(λI) )

≤
√
2 log(1

δ
) + d log(1 + Ti,t

λd
) , (A.213)

where Eq.(A.213) is because det(M̃ ′
i,t) ≤

(
trace(λI+

∑
s∈[t]
is=i

xasx
⊤
as)

d

)d

≤(λd+Ti,t

d

)d, and det(λI) = λd.
Plugging this into Eq.(A.212), we can get

∥∥∥θ̃i,t − θi

∥∥∥
2
≤

√
λ+

√
2 log(1δ ) + d log(1 + Ti,t

λd )√
λmin(M̃ ′

i,t)
. (A.214)

Then we need to bound
∥∥∥θi − θ̂Vi,t,t

∥∥∥
2
. With the correct clus-
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tering, Vi,t = Vj(i), we have

θ̂Vi,t,t − θi = M−1
Vi,t,t

bVj,t,t

= (λI +
∑
s∈[t]

is∈Vj(i)

wis,sxasx
>
as
)−1(

∑
s∈[t]

is∈Vj(i)

wis,sxasrs)− θi

= (λI +
∑
s∈[t]

is∈Vj(i)

wis,sxasx
>
as
)−1(

∑
s∈[t]

is∈Vj(i)

wis,sxas(x
>
as
θi + ηs + cs)))− θi

(A.215)

= (λI +
∑
s∈[t]

is∈Vj(i)

wis,sxasx
>
as
)−1
(
(λI +

∑
s∈[t]

is∈Vj(i)

wis,sxasx
>
as
)θi − λθi

+
∑
s∈[t]

is∈Vj(i)

wis,sxasηs +
∑
s∈[t]

is∈Vj(i)

wis,sxascs))
)
− θi

= −λM−1
Vi,t,t

θi +M−1
Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxasηs +M−1
Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxascs .

(A.216)

Therefore, we have∥∥∥θi − θ̂Vi,t,t

∥∥∥
2

≤ λ
∥∥∥M−1

Vi,t,t
θi

∥∥∥
2
+

∥∥∥∥∥∥∥∥M
−1
Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxasηs

∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥M
−1
Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxascs

∥∥∥∥∥∥∥∥
2

≤ λ
∥∥∥M− 1

2

Vi,t,t

∥∥∥2
2
‖θi‖2 +

∥∥∥∥∥∥∥∥M
− 1

2

Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxasηs

∥∥∥∥∥∥∥∥
2

∥∥∥M− 1
2

Vi,t,t

∥∥∥
2
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+

∥∥∥∥∥∥∥∥M
− 1

2

Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxasηs

∥∥∥∥∥∥∥∥
2

∥∥∥M− 1
2

Vi,t,t

∥∥∥
2

(A.217)

≤

√
λ+

∥∥∥∥∑ s∈[t]
is∈Vj(i)

wis,sxasηs

∥∥∥∥
M−1

Vi,t,t

+

∥∥∥∥∑ s∈[t]
is∈Vj(i)

wis,sxascs

∥∥∥∥
M−1

Vi,t,t√
λmin(MVi,t,t)

(A.218)

Let x̃s ≜ √wis,sxas, η̃s ≜ √wis,sηs, then we have: ‖x̃s‖2 ≤∥∥√wis,s

∥∥
2
‖xas‖2 ≤ 1, η̃s is still 1-sub-gaussian (since ηs is 1-

sub-gaussian and √wis,s ≤ 1), MVi,t,t = λI +
∑

s∈[t]
is∈Vj(i)

x̃sx̃
>
s , and∥∥∥∥∑ s∈[t]

is∈Vj(i)

wis,sxasηs

∥∥∥∥
M−1

Vi,t,t

becomes
∥∥∥∥∑ s∈[t]

is∈Vj(i)

x̃sη̃s

∥∥∥∥
M−1

Vi,t,t

. Then,

following Theorem 1 in [43], with probability at least 1 − δ for
some δ ∈ (0, 1), for a fixed normal user i, we have∥∥∥∥∥∥∥∥

∑
s∈[t]

is∈Vj(i)

wis,sxasηs

∥∥∥∥∥∥∥∥
M−1

Vi,t,t

≤

√
2 log(1

δ
) + log(

det(MVi,t,t)

det(λI) )

≤
√

2 log(1
δ
) + d log(1 +

TVi,t,t

λd
) ,

(A.219)

where Eq.(A.213) is because det(MVi,t,t) ≤

( trace(λI+
∑

s∈[t]
is∈Vj(i)

xasx
⊤
as)

d

)d

≤(λd+TVi,t,t

d

)d, and det(λI) = λd.



A.4. APPENDIX FOR CHAPTER 6 294

For
∥∥∥∥∑ s∈[t]

is∈Vj(i)

wis,sxascs

∥∥∥∥
M−1

Vi,t,t

, we have

∥∥∥∥∥∥∥∥
∑
s∈[t]

is∈Vj(i)

wis,sxascs

∥∥∥∥∥∥∥∥
M−1

Vi,t,t

≤
∑
s∈[t]

is∈Vj(i)

|cs|wis,s ‖xas‖M−1
Vi,t,t

≤ αC , (A.220)

where Eq.(A.220) is because wis,s ≤ α
‖xas‖M ′−1

is,s

≤ α
‖xas‖M ′−1

is,t

≤
α

‖xas‖M−1
Vi,t,t

(since MVi,t,t �M ′
is,t
�M ′

is,s
, M ′−1

is,s
�M ′−1

is,t
�M−1

Vi,t,t
,

‖xas‖M ′−1
is,s
≥ ‖xas‖M ′−1

is,t
≥ ‖xas‖M−1

Vi,t,t
), and

∑
s∈[t] |cs| ≤ C.

Therefore, we have∥∥∥θi − θ̂Vi,t,t

∥∥∥
2
≤
√
λ+

√
2 log(1δ ) + d log(1 + TVi,t,t

λd ) + αC√
λmin(MVi,t,t)

.

(A.221)
With Eq.(A.221), Eq.(A.214) and Eq.(A.209), together with

Lemma A.3.2, we have that for a normal user i, for any t ≥ T0,
with probability at least 1− 5δ for some δ ∈ (0, 15)∥∥∥θ̃i,t − θ̂Vi,t,t

∥∥∥
≤
∥∥∥θ̃i,t − θi

∥∥∥
2
+
∥∥∥θi − θ̂Vi,t,t

∥∥∥
2

≤

√
λ+

√
2 log(1δ ) + d log(1 + Ti,t

λd )√
λmin(M̃ ′

i,t)
+

√
λ+

√
2 log(1δ ) + d log(1 + TVi,t,t

λd ) + αC√
λmin(MVi,t,t)

,

(A.222)
which is exactly the detection condition in Line 7 of Algo.9.

Therefore, by the proof by contrapositive, we complete the
proof of Theorem 6.4.5.
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A.4.6 Description of Baselines

We compare RCLUB-WCU to the following five baselines for rec-
ommendations.

• LinUCB[41]: A state-of-the-art bandit approach for a single
user without corruption.

• LinUCB-Ind: Use a separate LinUCB for each user.

• CW-OFUL[51]: A state-of-the-art bandit approach for single
user with corruption.

• CW-OFUL-Ind: Use a separate CW-OFUL for each user.

• CLUB[46]: A graph-based clustering of bandits approach for
multiple users without corruption.

• SCLUB[237]: A set-based clustering of bandits approach for
multiple users without corruption.

A.4.7 More Experiments

A.4.7.1 Different Corruption Levels

To see our algorithm’s performance under different corruption
levels, we conduct the experiments under different corruption lev-
els for RCLUB-WCU, CLUB, and SCLUB on Amazon and Yelp
datasets. Recall the corruption mechanism in Section 6.5.1, we
set k as 1,000; 10,000; 100,000. The results are shown in Fig.A.2.
All the algorithms’ performance becomes worse when the corrup-
tion level increases. But RCLUB-WCU is much robust than the
baselines.
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Figure A.2: Cumulative regret in different corruption levels
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Figure A.3: Cumulative regret with different cluster numbers

A.4.7.2 Different Cluster numbers

Following [135], we test the performances of the cluster-based al-
gorithms (RCLUB-WCU, CLUB, SCLUB) when the underlying
cluster number changes. We set m as 5, 10, 20, and 50. The
results are shown in Fig.A.3. All these algorithms’ performances
decrease when the cluster numbers increase, matching our theo-
retical results. The performances of CLUB and SCLUB decrease
much faster than RCLUB-WCU, indicating that RCLUB-WCU
is more robust when the underlying user cluster number changes.
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A.5 Appendix of Chapter 7

A.5.1 Proof of Lemma 7.3.1

Proof. According to the closed-form solution of θt in Eq. (7.5)
(7.6), we can calculate the estimation error as follows

θt − θ∗ = M−1
t bt − θ∗

=

(
t−1∑
τ=1

xaτx
⊤
aτ +

t∑
τ=1

∑
k∈Kτ

x̃kx̃
⊤
k + βI

)−1( t−1∑
τ=1

xaτ raτ ,τ +
t∑

τ=1

∑
k∈Kτ

x̃kr̃k,τ

)
− θ∗

=

(
t−1∑
τ=1

xaτx
⊤
aτ +

t∑
τ=1

∑
k∈Kτ

x̃kx̃
⊤
k + βI

)−1( t−1∑
τ=1

xaτ

(
x⊤
aτθ∗ + ϵτ

)
+

t∑
τ=1

∑
k∈Kτ

x̃k

(
x̃⊤
k θ∗ + ϵ̃τ

))
− θ∗

=

(
t−1∑
τ=1

xaτx
⊤
aτ +

t∑
τ=1

∑
k∈Kτ

x̃kx̃
⊤
k + βI

)−1( t−1∑
τ=1

xaτx
⊤
aτ +

t∑
τ=1

∑
k∈Kτ

x̃kx̃
⊤
k + βI − βI

)
θ∗ − θ∗

+M−1
t (

t−1∑
τ=1

xaτ ϵτ +

t∑
τ=1

∑
k∈Kτ

x̃k ϵ̃τ )

= −βM−1
t θ∗ +M−1

t (
t−1∑
τ=1

xaτ ϵτ +
t∑

τ=1

∑
k∈Kτ

x̃k ϵ̃τ ) .

We can then bound the projection of the estimation error onto
the direction of the action vector xa:∣∣x>a (θt − θ∗)

∣∣
≤ β

∣∣x>aM−1
t θ∗

∣∣+ ∣∣∣∣∣x>aM−1
t (

t−1∑
τ=1

xaτ ϵτ +
t∑

τ=1

∑
k∈Kτ

x̃kϵ̃τ)

∣∣∣∣∣
≤ β

∥∥∥x>aM− 1
2

t

∥∥∥
2

∥∥∥M− 1
2

t θ∗

∥∥∥
2
+
∥∥∥x>aM− 1

2
t

∥∥∥
2
×

∥∥∥∥∥M− 1
2

t (
t−1∑
τ=1

xaτ ϵτ +
t∑

τ=1

∑
k∈Kτ

x̃kϵ̃τ)

∥∥∥∥∥
2

(A.223)
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≤ β ‖xa‖M−1
t

∥∥∥M− 1
2

t

∥∥∥
2
‖θ∗‖2 + ‖xa‖M−1

t

∥∥∥∥∥
t−1∑
τ=1

xaτ ,τϵτ +
t∑

τ=1

∑
k∈Kτ

x̃kϵ̃τ

∥∥∥∥∥
M−1

t

(A.224)

≤ ‖xa‖M−1
t

(√
β ‖θ∗‖2 +

∥∥∥∥∥
t−1∑
τ=1

xaτ ϵτ +
t∑

τ=1

∑
k∈Kτ

x̃kϵ̃τ

∥∥∥∥∥
M−1

t

)
,

(A.225)

where Eq. (A.223) is by the Cauchy–Schwarz inequality, Eq.
(A.224) is by the inequality of the matrix operator norm, and Eq.
(A.225) is because λmin(Mt) ≥ β,

∥∥∥M− 1
2

t

∥∥∥
2
=
√

λmax(M
−1
t ) =√

1
λmin(Mt)

≤
√

1
β .

Theorem 1 in [43] suggests that with probability at least 1− δ∥∥∥∥∥
t−1∑
τ=1

xaτ ϵτ +
t∑

τ=1

∑
k∈Kτ

x̃kϵ̃k

∥∥∥∥∥
M−1

t

≤

√
2 log

(
det(Mt)

1
2det(βI)

1
2

δ

)
,

(A.226)
where det(·) denotes the determinate of the argument.

We have

det(Mt) =
d∏

i=1

λi

≤
(∑d

i=1 λi

d

)d (A.227)

=
(trace(Mt)

d

)d (A.228)

=

(
trace(

∑t−1
τ=1 xaτx

>
aτ
+
∑t

τ=1

∑
k∈Kτ

x̃kx̃
>
k + βI)

d

)d

≤
(t+ b(t) + βd

d

)d
,
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where λi, i = 1, 2, . . . , d denotes the eigenvalues of the matrix Mt,
trace(Mt) denotes the trace of Mt, Eq. (A.227) follows by the
inequality of arithmetic and geometric means, Eq. (A.228) follows
since the trace of a matrix is equal to the sum of its eigenvalues.

Plugging the above inequality and det(βI) = βd into Eq.
(A.226), we can get∥∥∥∥∥

t−1∑
τ=1

xaτ ϵτ +
t∑

τ=1

∑
k∈Kτ

x̃kϵ̃k

∥∥∥∥∥
M−1

t

≤

√
2 log(1

δ
) + d log(1 + b(t) + t

βd
) .

(A.229)
The result then follows by plugging Eq. (A.229) into Eq. (A.225),
and the fact that ‖θ∗‖2 ≤ 1.

A.5.2 Proof of Lemma 7.3.2

Proof. Recall that in ConLinUCB-BS, the key-terms are uniformly
sampled from the pre-computed barycentric spanner B, i.e., k ∼
unif(B). Therefore we have

λB := λmin(Ek∼unif(B)[x̃kx̃
>
k ]) > 0 . (A.230)

Using Eq. (7.11) in the Lemma 7 in [135], and the fact that
bt = b · t, then with probability at least 1 − δ for δ ∈ (0, 18 ], we
have

λmin(
t∑

τ=1

∑
k∈Kτ

x̃kx̃
>
k ) ≥

λBbt

2
, (A.231)

for all t ≥ t0 =
256
bλ2

B
log(128d

λ2
Bδ
).

Then, by Courant–Fischer theorem [292], the fact that ‖xa‖2 =
1, together with Eq. (A.231), we have that for any t ≥ t0,with
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probability at least 1− δ for δ ∈ (0, 18 ],

‖xa‖M−1
t

=

√
x>aM

−1
t xa

≤ max
x∈Rd

∥x∥2=1

√
x>M−1

t x

=

√
λmax(M

−1
t )

=

√√√√λmax

(
(
t−1∑
τ=1

xaτx
>
aτ
+

t∑
τ=1

∑
k∈Kτ

x̃kx̃>k + βI)−1
)

=

√√√√√ 1

λmin

(∑t−1
τ=1 xaτx

>
aτ
+
∑t

τ=1

∑
k∈Kτ

x̃kx̃>k + βI

)
≤
√

1

λmin(
∑t

τ=1

∑
k∈Kτ

x̃kx̃>k )

≤
√

2

λBbt
.

A.5.3 Proof of Theorem 7.3.3

Proof. We denote the instantaneous regret at round t as Rt. With
the definition of the cumulative regret given in Eq. (7.2), the arm
selection strategy shown in Eq. (7.7) and Lemma 7.3.1, we can
bound the regret Rt at each round t = 1, 2, 3, 4, ..., T as follows

Rt = x>a∗tθ
∗ − x>atθ

∗

= x>a∗t (θ
∗ − θt) + (θ>t xa∗t + Ca∗t ,t)− (θ>t xat + Cat,t)

+ x>at(θt − θ∗) + Cat,t − Ca∗t ,t

≤ 2Cat,t .

(A.232)
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With Lemma 7.3.2, together with the assumption that rt ≤ 1

for any t, with probability at least 1 − δ for some δ ∈ (0, 14 ], we
can get

R(T ) = R(dt0e) +
T∑

t=dt0e+1

Rt

≤ t0 + 1 + 2
T∑

t=dt0e

Cat,t

≤ t0 + 1 + 2αt

T∑
t=dt0e

‖xat‖M−1
t

≤ t0 + 1 + 2αT

T∑
t=dt0e

‖xat‖M−1
t

(A.233)

≤ t0 + 1 + 2αT

T∑
t=dt0e

√
2

λBbt

≤ t0 + 1 + 2αT

√
2

λBb

∫ T

t0

√
1

t
dt

=≤ t0 + 1 + 4αT

√
2

λBb
(
√
T −
√
t0)

≤ t0 + 1 + 4αT

√
2

λBb

√
T ,

where Eq. (A.233) follows since αt is non-decreasing in t.
The result follows by plugging in the definition of t0 and αT .

A.5.4 Proof of Theorem 7.3.4

Proof. We first prove the following result:
For any two positive definite matrices A,B ∈ Rd×d, and any
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vector x ∈ Rd, we have:

‖x‖2(A+B)−1 ≤ ‖x‖2A−1 . (A.234)

This result can be proved by the following arguments:

‖x‖2(A+B)−1 = x>(A+B)−1x

= x>
(
A−1 −A−1(B−1 +A−1)−1A−1

)
x (A.235)

= x>A−1x− (A−1x)>(B−1 +A−1)−1(A−1x)

≤ x>A−1x = ‖x‖2A−1 , (A.236)

where Eq. (A.235) follows from the Woodbury matrix identity
[293], and Eq. (A.236) is because (B−1 + A−1)−1 is a positive
definite matrix.

With the above result, then following Eq. (A.232) and the
Cauchy–Schwarz inequality, we can get

R(T ) ≤ 2
T∑
t=1

Cat,t

= 2αt

T∑
t=1

‖xat‖M−1
t

≤ 2αT

T∑
t=1

‖xat‖M−1
t

≤ 2αT

√√√√T
T∑
t=1

‖xat‖
2
M−1

t

≤ 2αT

√√√√T
T∑
t=1

‖xat‖
2
V −1
t

.

(A.237)

Using Lemma 11 in [43], with probability at least 1−δ, we can
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get
T∑
t=1

‖xa,t‖2V −1
t
≤ 2 log

(
det(VT )

det(βI)

)
. (A.238)

Following similar steps as in Eq. (A.228), we can get that

det(VT )

det(βI)
≤
(T + βd

βd

)d
. (A.239)

Therefore we have
T∑
t=1

‖xa,t‖2V −1
t
≤ 2d log(1 + T + 1

βd
) . (A.240)

The result then follows by plugging in the definition of αT and
Eq. (A.240) into Eq. (A.237).
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A.6 Appendix for Chapter 8

A.6.1 Restarted SAVE+-BOB

In this section, we provide the details of our proposed Restarted SAVE+-
BOB algorithm. The Restarted SAVE+-BOB algorithm is sum-
marized in Algo.18. We divide the K rounds into dKH e blocks,
with each block having H rounds (except the last one may have
less than H). Within each block i, we use a fixed (αi, wi) pair
to run the Restarted SAVE+ algorithm. To adaptively learn the
optimal (α,w) pair without the knowledge of VK and BK , we
employ an adversarial bandit algorithm (Exp3 in [183]) as the
meta-learner to select αi, wi over time for i ∈ dKH e blocks. Specif-
ically, in each block, the meta learner selects a (α,w) pair from
the candidate pool to feed to Restarted SAVE+, and the cumula-
tive reward received by Restarted SAVE+ within the block is fed
to the meta-learner as the reward feedback to select a better pair
for the next block.

We set H to be dd 2
5K

2
5e, and set the candidate pool of (α,w)

pairs for the Exp3 algorithm as:

P = {(w, α) : w ∈ W , α ∈ J } , (A.241)

where

W = {wi = d
1
32i−1|i ∈ d1

3
log2Ke+ 1} ∪ {wi = d

2
52i−1|i ∈ d2

5
log2Ke+ 1} ,

(A.242)
and

J = {αi = d
1
32−i+1|i ∈ d1

3
log2Ke+ 1} ∪ {αi = d

11
302−i+1|i ∈ d11

30
log2Ke+ 1} .

(A.243)
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The algorithm also labels all the |P| =
(
d13 log2Ke+ d

2
5 log2Ke+

2
)
·
(
d13 log2Ke+d

11
30 log2Ke+2

)
candidate pairs of parameters in

P ,i.e., P = {(wi, αi)}|P|i=1. The algorithm initializes {sj,1}|P|j=1 to be
sj,1 = 1, ∀j = 0, 1, . . . , |P|, which means that at the beginning,
the algorithm selects a pair from P uniformly at random. At the
beginning of each block i ∈ [dK/He], the meta-learner (Exp3)
calculates the distribution (pj,i)

|P|
j=1 over the candidate set P by

pj,i = (1− γ)
sj,i∑|P|
u=1 su,i

+
γ

|P|+ 1
, ∀j = 1, . . . , |P| , (A.244)

where γ is defined as

γ = min
{
1,

√
(|P|+ 1) ln(|P|+ 1)

(e− 1)dK/He

}
. (A.245)

Then, the meta-learner draws a ji from the distribution (pj,i)
|P|
j=1,

and sets the pair of parameters in block i to be (wji, αji), and
runs the base algorithm Algo.12 from scratch in this block with
(wji, αji), then feeds the cumulative reward in the block

∑min{i·H,K}
k=(i−1)H+1 rk

to the meta-learner. The meta-learner rescales
∑min{i·H,K}

k=(i−1)H+1 rk to∑min{i·H,K}
k=(i−1)H+1 rk

H+R

√
H
2 log

(
K(KH+1)

)
+ 2

3 ·R log
(
K(KH+1)

) to make it in the range [0, 1]

with high probability (supported by Lemma A.6.9). The meta-
learner updates the parameter sji,i+1 to be

sji,i+1 = sji,i · exp

 γ

(|P|+ 1)pji,i

1

2
+

∑min{i·H,K}
k=(i−1)H+1 rk

H +R
√

H
2 log

(
K(KH + 1)

)
+ 2

3 ·R log
(
K(KH + 1)

)
 ,

(A.246)

and keep others unchanged, i.e., su,i+1 = su,i, ∀u 6= ji. After
that, the algorithm will go to the next block, and repeat the same
process in block i+ 1.



A.6. APPENDIX FOR CHAPTER 8 306

Algorithm 18 Restarted SAVE+-BOB
Require: total time rounds K; problem dimension d; noise upper bound R;

α > 0; the upper bound on the ℓ2-norm of a in Dk(k ≥ 1), i.e., A; the
upper bound on the ℓ2-norm of θk (k ≥ 1), i.e., B.

1: Initialize H = dd 2
5K

2
5 e; P as defined in Eq.(A.241), and index the |P| =(

d1
3
log2 Ke + d25 log2 Ke + 2

)
·
(
d1
3
log2 Ke + d1130 log2 Ke + 2

)
items in P ,

i.e., P = {(wi, αi)}|P|
i=1; γ = min

{
1,
√

(|P|+1) ln(|P|+1)
(e−1)⌈K/H⌉

}
; {sj,1}|P|

j=1 is set to
sj,1 = 1, ∀j = 0, 1, . . . , |P|.

2: for i = 1, 2, . . . , dK/He do
3: Calculate the distribution (pj,i)

|P|
j=1 by pj,i = (1 − γ)

sj,i∑|P|
u=1 su,i

+
γ

|P|+1
, ∀j = 1, . . . , |P|.

4: Set ji ← j with probability pj,i, and (wi, αi)← (wii , αji).
5: Run Algo.12 from scratch in block i (i.e., in rounds k = (i − 1)H +

1, . . . ,min{i ·H,K}) with (w, α) = (wi, αi).

6: Update sji,i+1 = sji,i·exp

 γ
(|P|+1)pji,i

1
2
+

∑min{i·H,K}
k=(i−1)H+1

rk

H+R

√
H
2

log
(
K(K

H
+1)
)
+ 2

3
·R log

(
K(K

H
+1)
)
,

and keep all the others unchanged, i.e., su,i+1 = su,i, ∀u 6= ji.
7: end for

We have the following theorem to bound the regret of Restarted
SAVE+-BOB.

Theorem A.6.1. By using the BOB framework with Exp3 as
the meta-algorithm and Restarted SAVE+ as the base algorithm,
with the candidate pool P for Exp3 specified as in Eq.(A.241),
Eq.(A.242), Eq.(A.243), and H = dd 2

5K
2
5e, then the regret of

Restarted SAVE+-BOB (Algo.18) satisfies

Regret(K) = Õ(d4/5V
2/5
K B

1/5
K K2/5 + d2/3B

1/3
K K2/3 + d2/5K7/10).

(A.247)

Proof. See Appendix A.6.7 for the full proof.
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Remark 21. We discuss the regret of Algo.18 in Corollary 8.2
in the following special cases. In the case where the total vari-
ance is small, i.e., VK = Õ(1), assuming K2 > d, our result
becomes Õ(d2/3B

1/3
K K2/3 + d1/5K7/10), when d14B10

K > K, it be-
comes Õ(d2/3B

1/3
K K2/3), better than all the previous results [253,

192, 254, 194]. In the worst case where VK = O(K), our result
becomes Õ(d4/5B

1/5
K K4/5).

A.6.2 Additional Experiment Setup

For Restarted-WeightedOFUL+, we set λ = 1, β̂k = 10, w = 1000,
and we grid search the variance parameters α and γ, both among
values [1, 1.5, 2, 2.5, 3]. Finally we set α = 1, and γ = 2. For
Restarted SAVE+ we set w = 1000, β̂k,ℓ = 2−ℓ+1, and grid search
L from 1 to 10 with stepsize of 1 and finally choose L = 6. For
SW-UCB, we set λ = 1, w = 1000, βk = 10. The Modified
EXP3.S requires two parameters ᾱ and γ̄, and we set γ̄ = 0.01

and ᾱ = 1
K .

To test the algorithms’ performance under different total time
horizons, we let K vary from 3× 104 to 2.4× 105, with a stepsize
of 3 × 104, and plot the cumulative regret Regret(K) for these
different total time step K. We set BK = 1, 10, 20, and K1/3 to
observe their performance in different levels of BK .

A.6.3 Proof of Theorem 8.3.1

We prove the lower bound in Theorem 8.3.1 here. We need the
following lemma from [203].

Lemma A.6.2 (Modification from Lemma 25, [203]). Fix a pos-
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itive real 0 < δ ≤ 1/3, and positive integers T, d and assume
that T ≥ d2/(2δ). Let ∆ =

√
dδ/T/(4

√
2) and consider the lin-

ear bandit problems Lµ parameterized with a parameter vector
µ ∈ {−∆,∆}d and action set A = {−1/

√
d, 1/
√
d}d so that the

reward distribution for taking action a ∈ A is a Bernoulli dis-
tribution B(δ + 〈µ∗, a〉). Then for any bandit algorithm B such
that

Eµ∼Unif{−∆,∆}d[Regret(T,Lµ)] ≥
d
√
Tδ

8
√
2
. (A.248)

Here Regret(T,Lµ) represents the regret under algorithm B on the
instance Lµ.

Next we prove Theorem 8.3.1.

Proof of Theorem 8.3.1. Let T < K be some constant to be de-
fined. Let δ be a constant satisfying 2δ ≤ d2/T . We create w =

K/T number of linear bandit instances with the linear parame-
ter µ1, . . . ,µw, where µi ∼ {−∆,∆}d,∆ =

√
dδ/T/4

√
2. Our

nonstationary instance Lµ1,...,µw
consists of Lµ1

, . . . ,Lµw
, where

at the step i · T + 1, . . . , i · T + T , Lµ1,...,µw
follows Lµi

. Then by
the independence of µi, we have

Eµ1,...,µw∼Unif{−∆,∆}dRegret(T,Lµ1,...,µw
) =

w∑
i=1

Eµi∼Unif{−∆,∆}d[Regret(T,Lµi
)]

≥ d
√
Tδ

8
√
2
· K
T
. (A.249)

Next we calculate the total variation and total variance for in-
stance Lµ1,...,µw

. For each step, the reward distribution is a Bernoulli
distribution B(δ + 〈µi, a〉), whose variance is

(δ + 〈µi, a〉)(1− δ − 〈µi, a〉) ≤ (δ + 〈µi, a〉) ≤ 2δ, (A.250)
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where we use the fact
√
d∆ ≤ δ. Therefore, the total variance

over K steps is bounded by

V ≤ 2Kδ. (A.251)

Next, for the total variation, we have for any k, k+1 belong to the
same µi, the variation of µ is 0. Note that for any two different
µi,µj, their difference is at most ‖µi−µj‖ ≤ 2

√
d ·∆2, then the

total variation is bounded by

B ≤ K

T
· 2∆
√
d =

√
dδ/T/(4

√
2)
K

T
· 2
√
d =

dK
√
δ

2
√
2T 3

. (A.252)

Then we select δ and T as

δ =
VK

2K
, T = max{

(
KVKd

2

16B2
K

)1/3

, d2K/VK},

satisfying 2Kδ ≤ VK ,
dK
√
δ

2
√
2T 3
≤ BK , T ≥ d2

2δ
. (A.253)

We have the lower bound as

Eµ1,...,µw∼Unif{−∆,∆}dRegret(T,Lµ1,...,µw
) ≥ Ω(d2/3B

1/3
K V

1/3
K K1/3 ∧ VK).

(A.254)

Therefore, there must exists µ∗1, . . . ,µ∗w, satisfying

Regret(T,Lµ∗
1,...,µ

∗
w
) ≥ Ω(d2/3B

1/3
K V

1/3
K K1/3 ∧ VK). (A.255)

Finally, combining (A.255) with the lower bound result in [186]
concludes our proof.
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A.6.4 Proof of Lemma 8.4.1

For simplicity, we denote

β̂ := 12

√
d log(1 + wA2

α2dλ
) log(32(log(γ

2

α
+ 1)

w2

δ
)

+ 30 log(32(log(γ
2

α
) + 1)

w2

δ
)
R

γ2
+
√
λB. (A.256)

It is obvious that β̂ ≥ β̂k for all k ∈ [K]. We call the restart
time rounds grids and denote them by g1, g2, . . . gdKw e−1

, where
gi%w = 0 for all i ∈ [dKw e − 1]. Let ik be the grid index of time
round k, i.e., gik ≤ k < gik+1.

For ease of exposition and without loss of generality, we prove
the lemma for k ∈ [1, w]. We calculate the estimation difference
|a>(θ̂k − θk)| for any a ∈ Rd, ‖a‖2 ≤ A, k ∈ [1, w]. By definition:

θ̂k = Σ̂
−1
k bk = Σ̂

−1
k (

k−1∑
t=1

rtat
σ̄2
t

) = Σ̂
−1
k (

k−1∑
t=1

ata>t θt

σ̄2
t

+
k−1∑
t=1

atϵt
σ̄2
t

) ,

(A.257)
where Σ̂k = λI +

∑k−1
t=gik

ata⊤t
σ̄2
t
.

Then we have

θ̂k− θk = Σ̂
−1
k (

k−1∑
t=1

ata>t
σ̄2
t

(θt− θk) +
k−1∑
t=1

atϵt
σ̄2
t

)− λΣ̂
−1
k θk . (A.258)

Therefore

|a>(θ̂k − θk)| ≤

∣∣∣∣∣a>Σ̂−1k

k−1∑
t=1

ata>t
σ̄2
t

(θt − θk)

∣∣∣∣∣
+ ‖a‖

Σ̂
−1

k

‖
k−1∑
t=1

atϵt
σ̄2
t

‖
Σ̂

−1

k

+ λ‖a‖
Σ̂

−1

k

‖Σ̂−
1
2

k θk‖2 , (A.259)
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where we use the Cauchy-Schwarz inequality.
For the first term, we have that for any k ∈ [1, w]∣∣∣∣∣a>Σ̂−1k

k∑
t=1

ata>t
σ̄2
t

(θt − θk)

∣∣∣∣∣
≤

k−1∑
t=1

|a>Σ̂−1k

at
σ̄t
| · |at

σ̄t

>
(
k−1∑
s=t

(θs − θs+1))| (triangle inequality)

≤
k−1∑
t=1

|a>Σ̂−1k

at
σ̄t
| · ‖at

σ̄t
‖2 · ‖

k−1∑
s=t

(θs − θs+1)‖2 (Cauchy-Schwarz)

≤ A

α

k−1∑
t=1

|a>Σ̂−1k

at
σ̄t
| · ‖

k−1∑
s=t

(θs − θs+1)‖2 (‖at‖ ≤ A, σ̄t ≥ α)

≤ A

α

k−1∑
s=1

s∑
t=1

|a>Σ̂−1k

at
σ̄t
| · ‖θs − θs+1‖2

(
∑k−1

t=1

∑k−1
s=t =

∑k−1
s=1

∑s
t=1)

≤ A

α

k−1∑
s=1

√√√√[ s∑
t=1

a>Σ̂−1k a
]
·
[ s∑
t=1

at
σ̄t

>
Σ̂
−1
k

at
σ̄t

]
· ‖θs − θs+1‖2

(Cauchy-Schwarz)

≤ A

α

k−1∑
s=1

√√√√[ s∑
t=1

a>Σ̂−1k a
]
· d · ‖θs − θs+1‖2 ((⋆))

≤ A‖a‖2
α

√
d

k−1∑
s=1

√∑k−1
t=1 1

λ
· ‖θs − θs+1‖2 (λmax(Σ̂

−1
k ) ≤ 1

λ)

≤ A2

α

√
dw

λ

k−1∑
s=1

‖θs − θs+1‖2 , (A.260)

where the inequality (⋆) follows from the fact that
∑s

t=1
at
σ̄t

>Σ̂
−1
k

at
σ̄t
≤

d that can be proved as follows. We have
∑k−1

t=1
at
σ̄t

>Σ̂
−1
k

at
σ̄t

=
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∑k−1
t=1 tr

(
at
σ̄t

>Σ̂
−1
k

at
σ̄t

)
= tr

(
Σ̂
−1
k

∑k−1
t=1

at
σ̄t

at
σ̄t

>
)
. Given the eigen-

value decomposition
∑k−1

t=1
at
σ̄t

at
σ̄t

> = diag(λ1, . . . , λd)
>, we have

Σ̂k = diag(λ1 + λ, . . . , λd + λ)>, and tr
(
Σ̂
−1
k

∑k−1
t=1

at
σ̄t

at
σ̄t

>
)

=∑d
i=1

λj

λj+λ ≤ d.
For the second term, by the assumption on ϵk, we know that

|ϵk/σ̄k| ≤ R/α,

|ϵk/σ̄k| ·min{1, ‖ak/σ̄k‖Σ̂−1

k

} ≤ R‖ak‖Σ̂−1

k

/σ̄2
k ≤ R/γ2,

E[ϵk|a1:k, ϵ1:k−1] = 0, E[(ϵk/σ̄k)2|a1:k, ϵ1:k−1] ≤ 1, ‖ak/σ̄k‖2 ≤ A/α,

Therefore, setting Gk = σ(a1:k, ϵ1:k−1), and using that σk is Gk-
measurable, applying Theorem A.6.3 to (xk, ηk) = (ak/σ̄k, ϵk/σ̄k)

with ϵ = R/γ2 , we get that with probability at least 1 − δ, for
all k ∈ [1, w],

‖
k−1∑
t=1

atϵt
σ̄2
t

‖
Σ̂

−1

k

≤ 12

√
d log(1 + (k%w)A2

α2dλ
) log(32(log(γ

2

α
+ 1)

(k%w)2

δ
)

+ 30 log(32(log(γ
2

α
) + 1)

(k%w)2

δ
)
R

γ2
. (A.261)

For the last term

λ‖a‖
Σ̂

−1

k

‖Σ̂−
1
2

k θk‖2 ≤ λ‖a‖
Σ̂

−1

k

‖Σ̂−
1
2

k ‖2‖θk‖2

≤ λ‖a‖
Σ̂

−1

k

1√
λmin(Σ̂k)

‖θk‖2 ≤
√
λB‖a‖

Σ̂
−1

k

, (A.262)

where we use the fact that λmin(Σ̂k) ≥ λ.



A.6. APPENDIX FOR CHAPTER 8 313

Therefore, with probabilty at least 1− δ, we have

|a>(θ̂k − θk)|

≤ A2

α

√
dw

λ

k−1∑
t=1

‖θt − θt+1‖2

+ ‖a‖
Σ̂

−1

k

(
12

√
d log(1 + (k%w)A2

α2dλ
) log(32(log(γ

2

α
+ 1)

(k%w)2

δ
)

+ 30 log(32(log(γ
2

α
) + 1)

(k%w)2

δ
)
R

γ2
+
√
λB

)
=

A2

α

√
dw

λ

k−1∑
t=1

‖θt − θt+1‖2 + β̂k‖a‖Σ̂−1

k

, (A.263)

where β̂k is defined in Eq.(8.5).

A.6.5 Proof for Theorem 8.4.2

For simplicity of analysis, we only analyze the regret over the first
grid, i.e., we try to analyze Regret(K̃) for K̃ ∈ [1, w]. Denote E1
as the event when Lemma 8.4.1 holds. Therefore, under event E1,
for any K̃ ∈ [1, w], the regret can be bounded by

Regret(K̃) =
K̃∑
k=1

[
〈a∗k − ak,θk〉

]
=

K̃∑
k=1

[
〈a∗k,θk − θ̂k〉+ (〈a∗k, θ̂k〉+ β̂k‖a∗k‖Σ̂−1

k

)− (〈ak, θ̂k〉+ β̂k‖ak‖Σ̂−1

k

)

+ 〈ak, θ̂k − θk〉+ β̂k‖ak‖Σ̂−1

k

− β̂k‖a∗k‖Σ̂−1

k

]
≤ 2A2

α

√
dw

λ

K̃∑
k=1

k−1∑
t=1

‖θt − θt+1‖2 + 2
K̃∑
k=1

min
{
1, β̂k‖ak‖Σ̂−1

k

}
,

(A.264)
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where in the last inequality we use the definition of event E1, the
arm selection rule in Line 7 of Algo.8, and 0 ≤ 〈a∗k,θ∗〉−〈ak,θ∗〉 ≤
2.

Then we will bound the two terms in Eq.(A.264).
For the first term, we have

2A2

α

√
dw

λ

K̃∑
k=1

k−1∑
t=1

‖θt − θt+1‖2

=
2A2

α

√
dw

λ

K̃−1∑
t=1

K̃∑
k=t

‖θt − θt+1‖2

≤ 2A2

α

√
dw

λ
w

K̃−1∑
t=1

‖θt − θt+1‖2 . (A.265)

To bound the second term in Eq.(A.264), we decompose the
set [K̃] into a union of two disjoint subsets [K] = I1 ∪ I2.

I1 =
{
k ∈ [K̃] : ‖ak

σ̄k
‖
Σ̂

−1

k

≥ 1
}
, I2 =

{
k ∈ [K̃] : ‖ak

σ̄k
‖
Σ̂

−1

k

< 1
}
.

(A.266)

Then the following upper bound of |I1| holds:

|I1| =
∑
k∈I1

min
{
1, ‖ak

σ̄k
‖2
Σ̂

−1

k

}

≤
K̃∑
k=1

min
{
1, ‖ak

σ̄k
‖2
Σ̂

−1

k

}
≤ 2dι, (A.267)

where ι = log(1+ wA2

dλα2 ), the first equality holds since ‖xk

σ̄k
‖
Σ̂

−1

k

≥ 1

for k ∈ I1, the last inequality holds due to Lemma A.6.4 together
with the fact ‖ ak

σ̄k
‖2 ≤ A

α since σ̄k ≥ α and ‖ak‖2 ≤ A.
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Then, we have
K̃∑
k=1

min
{
1, β̂k‖ak‖Σ̂−1

k

}
=
∑
k∈I1

min
{
1, σ̄kβ̂k‖

ak
σ̄k
‖
Σ̂

−1

k

}
+
∑
k∈I2

min
{
1, σ̄kβ̂k‖

ak
σ̄k
‖
Σ̂

−1

k

}
≤
[∑
k∈I1

1

]
+
∑
k∈I2

σ̄kβ̂k‖
ak
σ̄k
‖
Σ̂

−1

k

≤ 2dι+ β̂
∑
k∈I2

σ̄k‖
ak
σ̄k
‖
Σ̂

−1

k

, (A.268)

where the first inequality holds since min{1, x} ≤ 1 and also
min{1, x} ≤ x, the second inequality holds by Eq.(A.267), and
the fact the β̂ ≥ β̂k for all k ∈ [K] (β̂ is defined in Eq.(A.256)).
Next we further bound the second summation term in (A.268).
We decompose I2 = J1 ∪ J2, where

J1 =
{
k ∈ I2 : σ̄k = σk ∪ σ̄k = α

}
, J2 =

{
k ∈ I2 : σ̄k = γ

√
‖ak‖Σ̂−1

k

}
.

Then
∑

k∈I2 σ̄k‖
ak
σ̄k
‖
Σ̂

−1

k

=
∑

k∈J1 σ̄k‖
ak
σ̄k
‖
Σ̂

−1

k

+
∑

k∈J2 σ̄k‖
ak
σ̄k
‖
Σ̂

−1

k

. First,
for k ∈ J1, we have∑

k∈J1

σ̄k‖
ak
σ̄k
‖
Σ̂

−1

k

≤
∑
k∈J1

(σk + α)min
{
1, ‖ak

σ̄k
‖
Σ̂

−1

k

}

≤

√√√√ K̃∑
k=1

(σk + α)2

√√√√ K̃∑
k=1

min
{
1, ‖ak

σ̄k
‖
Σ̂

−1

k

}2

≤

√√√√2
K̃∑
k=1

(σ2
k + α2)

√√√√ K̃∑
k=1

min
{
1, ‖ak

σ̄k
‖2
Σ̂

−1

k

}

≤ 2

√√√√ K̃∑
k=1

σ2
k + K̃α2

√
dι , (A.269)
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where the first inequality holds since σ̄k ≤ σk + α for k ∈ J1
and ‖ ak

σ̄k
‖
Σ̂

−1

k

≤ 1 since k ∈ J1 ⊆ I2, the second inequality holds
by Cauchy-Schwarz inequality, the third inequality holds due to
(a+ b)2 ≤ 2(a2+ b2), and the last inequality holds due to Lemma
A.6.4.

Finally we bound the summation for k ∈ J2. When k ∈ J2,
we have σ̄k = γ2‖ ak

σ̄k
‖Σ̂−1

k
. Therefore we have∑

k∈J2

σ̄k‖
ak
σ̄k
‖
Σ̂

−1

k

=
∑
k∈J2

γ2‖ak
σ̄k
‖2
Σ̂

−1

k

≤
K̃∑
k=1

γ2min
{
1, ‖ak

σ̄k
‖2
Σ̂

−1

k

}
≤ 2γ2dι , (A.270)

where in the first inequality we use the fact that ‖ ak
σ̄k
‖
Σ̂

−1

k

≤ 1 since
k ∈ J2 ⊆ I2, and in the last inequality we use Lemma A.6.4.

Therefore, with Eq.(A.264), Eq.(A.265), Eq.(A.268), Eq.(A.269),
Eq.(A.270), we can get the regret upper bound for K̃ ∈ [1, w]

Regret(K̃) ≤ 2A2w
3
2

α

√
d

λ

K̃−1∑
k=1

‖θk − θk+1‖2 + 4β̂
√
dι

√∑
k∈[K̃]

σ2
k + wα2

+ 4dιγ2β̂ + 4dι . (A.271)

Therefore, by the same deduction, we can get that

Regret([gi, gi+1]) ≤
2A2w

3
2

α

√
d

λ

gi+1−1∑
k=gi

‖θk − θk+1‖2

+ 4β̂
√
dι

√√√√ gi+1∑
k=gi

σ2
k + wα2 + 4dιγ2β̂ + 4dι ,

(A.272)
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where we use Regret([gi, gi+1]) to denote the regret accumulated
in the time period [gi, gi+1].

Finally, without loss of generality, we assume K%w = 0. Then
we have

Regret(K̃)

=

K
w−1∑
i=0

Regret([gi, gi+1])

≤ 2A2w
3
2

α

√
d

λ

K
w−1∑
i=0

gi+1−1∑
k=gi

‖θk − θk+1‖2 + 4β̂
√
dι

K
w−1∑
i=0

√√√√ gi+1∑
k=gi

σ2
k + wα2

+
4dιγ2β̂K

w
+

4dKι

w

≤ 2A2w
3
2

α

√
d

λ

K−1∑
k=1

‖θk − θk+1‖2

+ 4β̂
√
dι

√√√√√K

w

K
w−1∑
i=0

(

gi+1∑
k=gi

σ2
k + wα2) +

4dιγ2β̂K

w
+

4dKι

w

≤ 2A2w
3
2BK

α

√
d

λ
+ 4β̂

√
Kdι

w

√√√√ K∑
k=1

σ2
k +Kα2 +

4dιγ2β̂K

w
+

4dKι

w
,

where in the second inequality we use Cauchy-Schwarz inequality,
and the last inequality holds due to

∑
k∈[K−1] ‖θk−θk+1‖2 ≤ BK .

A.6.6 Proof for Theorem 8.5.1

Recall that we call the restart time rounds grids and denote them
by g1, g2, . . . gdKw e−1

, where gi%w = 0 for all i ∈ [dKw e − 1]. Let
ik be the grid index of time round k, i.e., gik ≤ k < gik+1. We
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denote Ψ̂k,ℓ := {t : t ∈ [gik , k − 1], ℓt = ℓ}.
For simplicity of analysis, we first try to bound the regret over

the first grid, i.e., we try to analyze Regret(K̃) for K̃ ∈ [1, w].
Note that in this case, for any k ∈ [K̃] with K̃ ∈ [1, w], we have
gik = 1, so Ψ̂k,ℓ := {t : t ∈ [1, k − 1], ℓt = ℓ}.

First, we calculate the estimation difference |a>(θ̂k,ℓ − θk)|
for any a ∈ Rd, ‖a‖2 ≤ A. Recall that by definition, Σ̂k,ℓ =

2−2ℓI +
∑

t∈Ψ̂k,ℓ
w2

t ata>t , b̂k,ℓ =
∑

t∈Ψ̂k,ℓ
w2

t rtat, and

θ̂k,ℓ = Σ̂−1k,ℓb̂k,ℓ = Σ̂−1k,ℓ(
∑
t∈Ψ̂k,ℓ

w2
t rtat) = Σ̂−1k,ℓ(

∑
t∈Ψ̂k,ℓ

w2
t ata>t θt +

∑
t∈Ψ̂k,ℓ

w2
t atϵt) .

Then we have

θ̂k,ℓ − θk = Σ̂−1k,ℓ(
∑
t∈Ψ̂k,ℓ

w2
t ata>t (θt − θk) +

∑
t∈Ψ̂k,ℓ

w2
t atϵt)− 2−2ℓΣ̂−1k,ℓθk .

(A.273)
Therefore, we can get

|a>(θ̂k,ℓ − θk)| ≤

∣∣∣∣∣∣a>Σ̂−1k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t ata>t (θt − θk)

∣∣∣∣∣∣+ ‖a‖Σ̂−1

k,ℓ

‖
∑
t∈Ψ̂k,ℓ

w2
t atϵt‖Σ̂−1

k,ℓ

+ 2−2ℓ‖a‖
Σ̂

−1

k,ℓ

‖Σ̂−
1
2

k,ℓθk‖2 , (A.274)

where we use the Cauchy-Schwarz inequality.
For the first term, we have that for any k ∈ [1, w]∣∣∣∣∣∣a>Σ̂−1k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t ata>t (θt − θk)

∣∣∣∣∣∣
≤
∑
t∈Ψ̂k,ℓ

|a>Σ−1k,ℓwtat| · |wta>t (
k−1∑
s=t

(θs − θs+1))|

(triangle inequality)
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≤
∑
t∈Ψ̂k,ℓ

|a>Σ−1k,ℓwtat| · ‖wtat‖2 · ‖
k−1∑
s=t

(θs − θs+1)‖2

(Cauchy-Schwarz)

≤ A
∑
t∈Ψ̂k,ℓ

|a>Σ̂−1k,ℓwtat| · ‖
k−1∑
s=t

(θs − θs+1)‖2

(‖at‖ ≤ A, wt =
2−ℓt

‖at‖Σ̂−1
t,ℓt

≤ 1)

≤ A

k−1∑
s=1

∑
t∈Ψ̂k,ℓ

|a>Σ̂−1k,ℓwtat| · ‖θs − θs+1‖2

≤ A

k−1∑
s=1

√√√√[ ∑
t∈Ψ̂k,ℓ

a>Σ̂−1k,ℓa
]
·
[∑
t∈Ψ̂k,ℓ

wtat>Σ̂
−1
k,ℓwtat

]
· ‖θs − θs+1‖2

(Cauchy-Schwarz)

≤ A

k−1∑
s=1

√√√√[ ∑
t∈Ψ̂k,ℓ

a>Σ̂−1k,ℓa
]
· d · ‖θs − θs+1‖2 ((⋆))

≤ A‖a‖2
√
d

k−1∑
s=1

√
22ℓ
∑
t∈Ψ̂k,ℓ

1 · ‖θs − θs+1‖2

(λmax(Σ̂
−1
k,ℓ) ≤ 1

2−2ℓ = 22ℓ)

≤ A22ℓ
√
dw

k−1∑
s=1

‖θs − θs+1‖2 , (A.275)

where the inequality (⋆) follows from the fact that
∑

t∈Ψ̂k,ℓ
wtat>Σ̂

−1
k,ℓwtat ≤

d that can be proved as follows. We have
∑

t∈Ψ̂k,ℓ
wtat>Σ̂

−1
k,ℓwtat =∑

t∈Ψ̂k,ℓ
tr
(
wtat>Σ̂

−1
k,ℓwtat

)
= tr

(
Σ̂
−1
k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t atat>

)
. Given the

eigenvalue decomposition
∑

t∈Ψ̂k,ℓ
w2

t atat> = diag(λ1, . . . , λd)
>, we
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have Σ̂k,ℓ = diag(λ1+λ, . . . , λd+λ)>, and tr
(
Σ̂
−1
k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t atat>

)
=∑d

i=1
λj

λj+λ ≤ d.
For the second term in Eq.(A.274), we can apply Theorem

A.6.5 for the layer ℓ. In detail, for any k ∈ [K], for each t ∈ Ψ̂k,ℓ,
we have

‖wtat‖Σ̂−1

t,ℓ

= 2−ℓ, E[w2
t ϵ

2
t |Ft] ≤ w2

tE[ϵ2t |Ft] ≤ w2
tσ

2
t , |wtϵt| ≤ |ϵt| ≤ R,

where the last inequality holds due to the fact that wt =
2−ℓt

‖at‖
Σ̂
−1
t,ℓt

≤

1. According to Theorem A.6.5, and taking a union bound, we
can deduce that with probability at least 1− δ, for all ℓ ∈ [L], for
all round k ∈ ΨK+1,ℓ,

‖
∑
t∈Ψ̂k,ℓ

w2
t atϵt‖Σ̂−1

k,ℓ

≤ 16 · 2−ℓ
√√√√∑

t∈Ψ̂k,ℓ

w2
tσ

2
t log(

4w2L

δ
) + 6 · 2−ℓR log(4w

2L

δ
) .

(A.276)

For simplicity, we denote Econf as the event such that Eq.(A.276)
holds.

For the third term in Eq.(A.274), we have

2−2ℓ‖a‖
Σ̂

−1

k,ℓ

‖Σ̂−
1
2

k,ℓθk‖2 ≤ 2−2ℓ‖a‖
Σ̂

−1

k,ℓ

‖Σ̂−
1
2

k ‖2‖θk‖2

≤ 2−2ℓ‖a‖
Σ̂

−1

k,ℓ

1√
λmin(Σ̂k,ℓ)

‖θk‖2 ≤ 2−ℓB‖a‖
Σ̂

−1

k

, (A.277)

where we use the fact that λmin(Σ̂k,ℓ) ≥ 2−2ℓ.
For simplicity, we denote ℓ∗ = d12 log2 log

(
4(w + 1)2L/δ

)
e+ 8.

Then, under Econf, by the definition of β̂k,ℓ in Eq.(8.9), Lemma
A.6.6 and Lemma A.6.7, with probability at least 1− δ, we have
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for all ℓ∗ + 1 ≤ ℓ ≤ L,

β̂k,ℓ ≥ 16 · 2−ℓ
√√√√∑

t∈Ψ̂k,ℓ

w2
tσ

2
t log(

4w2L

δ
) + 6 · 2−ℓR log(4w

2L

δ
) + 2−ℓB.

(A.278)

Therefore, with Eq.(A.274), Eq.(A.275), Eq.(A.276), Eq.(A.277),
Eq.(A.278), with probability at least 1−3δ, for all ℓ∗+1 ≤ ℓ ≤ L

we have

|a>(θ̂k,ℓ − θk)| ≤ A22ℓ
√
dw

k−1∑
s=1

‖θs − θs+1‖2 + β̂k,ℓ‖a‖Σ̂−1
k,ℓ
.

(A.279)
Then for all k ∈ [K] such that ℓ∗+1 ≤ ℓk ≤ L, with probability

at least 1− 3δ we have

〈a∗k,θk〉 ≤ min
ℓ∈[L]
〈a∗k, θ̂k,ℓ〉+ A22ℓ

√
dw

k−1∑
s=1

‖θs − θs+1‖2 + β̂k,ℓ‖a∗k‖Σ̂−1
k,ℓ

≤ A22L
√
dw

k−1∑
s=1

‖θs − θs+1‖2 +min
ℓ∈[L]
〈a∗k, θ̂k,ℓ〉+ β̂k,ℓ‖a∗k‖Σ̂−1

k,ℓ

≤ A22L
√
dw

k−1∑
s=1

‖θs − θs+1‖2 +min
ℓ∈[L]
〈ak, θ̂k,ℓ〉+ β̂k,ℓ‖ak‖Σ̂−1

k,ℓ

≤ A22L
√
dw

k−1∑
s=1

‖θs − θs+1‖2 + 〈ak, θ̂k,ℓk−1〉+ β̂k,ℓk−1‖ak‖Σ̂−1
k,ℓk−1

,

(A.280)

where the first inequality holds because of Eq.(A.279), the third
inequality holds because of the arm selection rule in Line 8 of
Algo.12.
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We decompose the regret for K̃ ∈ [1, w] as follows

Regret(K̃) =
∑
k∈[K̃]

(〈a∗k,θk〉 − 〈ak,θk〉)

=
∑
ℓ∈[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(〈a∗k,θk〉 − 〈ak,θk〉) +
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(〈a∗k,θk〉 − 〈ak,θk〉)

+
∑

k∈Ψ̂K̃+1,L+1

(〈a∗k,θk〉 − 〈ak,θk〉) . (A.281)

We will bound the three terms separately. For the first term, we
have for layer ℓ ∈ [ℓ∗] and round k ∈ Ψ̂K̃+1,ℓ, we have∑
k∈Ψ̂K̃+1,ℓ

(
〈a∗k,θ∗〉 − 〈ak,θ∗〉

)
≤ 2 |ΨK+1,ℓ|

= 22ℓ+1
∑

k∈Ψ̂K̃+1,ℓ

‖wkak‖2
Σ̂

−1

k,ℓ

≤ 2 · 1282 log(4(w + 1)2L

δ
)
∑

k∈Ψ̂K̃+1,ℓ

‖wkak‖2
Σ̂

−1

k,ℓ

≤ 2 · 1282 log(4(w + 1)2L

δ
) · 2d log(1 + 22ℓwA2

d
)

= Õ(d) , (A.282)

where the first inequality holds because the reward is in [−1, 1],
the equation follows from the fact that ‖wkak‖Σ̂−1

k,ℓ

= 2−ℓ holds for
all k ∈ ΨK+1,ℓ, the second inequality holds due to the fact that
2ℓ

∗ ≤ 128
√

log(4(w + 1)2L/δ), and the last inequality holds due
to Lemma A.6.4.

Therefore∑
ℓ∈[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(〈a∗k,θk〉 − 〈ak,θk〉) = Õ(d) . (A.283)
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For the second part in Eq.(A.281), we have∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(〈a∗k,θk〉 − 〈ak,θk〉)

≤
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(
〈ak, θ̂k,ℓ−1〉+ β̂k,ℓ−1‖ak‖Σ̂−1

k,ℓ−1

+ A22L
√
dw

∑
k∈Ψ̂K̃+1,ℓ

‖θs − θs+1‖2 − 〈ak,θk〉
)

≤ 2
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

β̂k,ℓ−1‖ak‖Σ̂−1
k,ℓ−1

+ A2
√
dw

∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

2L
k−1∑
s=1

‖θs − θs+1‖2 ,

(A.284)

where the inequality holds due to Eq.(A.280), the second inequal-
ity holds due to Eq.(A.279). We then try to bound the two terms.

For the first term in Eq.(A.284), we have∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

β̂k,ℓ−1‖ak‖Σ̂−1
k,ℓ−1
≤

∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

β̂k,ℓ−1 · 2−ℓ

≤
∑

ℓ∈[L]\[ℓ∗]

β̂K̃,ℓ−1 · 2
−ℓ
∣∣∣Ψ̂K̃+1,ℓ

∣∣∣
=

∑
ℓ∈[L]\[ℓ∗]

β̂K̃,ℓ−1 · 2
ℓ
∑

k∈Ψ̂K̃+1,ℓ

‖wkak‖2Σ−1
k,ℓ

≤
∑

ℓ∈[L]\[ℓ∗]

β̂K̃,ℓ−1 · 2
ℓ · 2d log(1 + 22ℓK̃A2

d
)

= Õ(d · 2ℓ · β̂K̃,ℓ−1)

= Õ

(
d
(√√√√ K̃∑

k=1

σ2
k +R + 1

))
,

(A.285)
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where the first inequality holds because by the algorithm design,
we have for all k ∈ Ψ̂K̃+1,ℓ: ‖ak‖Σ̂−1

k,ℓ−1
≤ 2−ℓ; the second inequality

holds because for all k ∈ Ψ̂K̃+1,ℓ, β̂k,ℓ−1 ≤ β̂K̃,ℓ−1; the first equality
holds because for all k ∈ Ψ̂K̃+1,ℓ, ‖wkak‖2Σ−1

k,ℓ

= 2−2ℓ; the third
inequality holds by Lemma A.6.4; the last two equalities hold
because by Lemma A.6.6 and Lemma A.6.7, we have β̂K̃,ℓ−1 =

Õ

(
2−ℓ(

√∑K̃
k=1 σ

2
k +R + 1)

)
.

For the second term in Eq.(A.284), we have

A2
√
dw

∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

2L
k−1∑
s=1

‖θs − θs+1‖2

≤ A22L
√
dw

∑
k∈[K̃−1]

k−1∑
s=1

‖θs − θs+1‖2

≤ A2
√
dw

3
2

α

K̃−1∑
k=1

‖θk − θk+1‖2 (A.286)

Therefore, with this, Eq.(A.284), and Eq.(A.285), we have∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(〈a∗k,θk〉 − 〈ak,θk〉)

≤ A2
√
dw

3
2

α

K̃−1∑
k=1

‖θk − θk+1‖2 + Õ

(
d
(√√√√ K̃∑

k=1

σ2
k +R + 1

))
.

(A.287)

Finally, for the last term in Eq.(A.281), we have∑
k∈Ψ̂K̃+1,L+1

(〈a∗k,θk〉 − 〈ak,θk〉)
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≤
∑

k∈Ψ̂K̃+1,L+1

(
〈ak, θ̂k,L〉+ β̂k,L‖ak‖Σ̂−1

k,L
+ A22L

√
dw

k−1∑
s=1

‖θs − θs+1‖2 − 〈ak,θk〉
)

≤
∑

k∈Ψ̂K̃+1,L+1

(
2β̂k,L‖ak‖Σ̂−1

k,L
+ A22L+1

√
dw

k−1∑
s=1

‖θs − θs+1‖2
)

≤
∑

k∈Ψ̂K̃+1,L+1

(
2−L+1β̂k,L + A22L+1

√
dw

k−1∑
s=1

‖θs − θs+1‖2
)

≤ 2A2
√
dw

3
2

α

K̃−1∑
k=1

‖θk − θk+1‖2 +
∑

k∈Ψ̂K̃+1,L+1

2−L+1β̂K̃,L

≤ 2A2
√
dw

3
2

α

K̃−1∑
k=1

‖θk − θk+1‖2 + w · 2α · β̂K̃,L

=
2A2
√
dw

3
2

α

K̃−1∑
k=1

‖θk − θk+1‖2 + Õ

(
wα2 ·

(√√√√ K̃∑
k=1

σ2
k +R + 1

))
,

(A.288)

where the first inequality holds due to Eq.(A.280), the second
inequality holds due to Eq.(A.279), the third inequality holds be-
cause by the algorithm design, we have for all k ∈ Ψ̂K̃+1,L+1:
‖ak‖Σ̂−1

k,L
≤ 2−L, the fourth inequality holds due to the same rea-

sons as before, and the fact that β̂K̃,L ≥ β̂k,L for all k ∈ β̂K̃,L; the

last inequality holds due to β̂K̃,ℓ−1 = Õ

(
α(

√∑K̃
k=1 σ

2
k +R+1)

)
.

Plugging Eq.(A.287), Eq.(A.288), and Eq.(A.283) into Eq.(A.281),
we can get that for K̃ ∈ [1, w]
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Regret(K̃) = Õ

(
A2
√
dw

3
2

α

K̃−1∑
k=1

‖θk − θk+1‖2 +
(
wα2 + d

)
·
(√√√√ K̃∑

k=1

σ2
k +R + 1

))
.

(A.289)
By the same deduction we can get

Regret([gi, gi+1])

= Õ

(
A2
√
dw

3
2

α

gi+1∑
k=gi

‖θk − θk+1‖2 +
(
wα2 + d

)
·
(√√√√ gi+1∑

k=gi

σ2
k +R + 1

))
.

(A.290)

Finally, without loss of generality, we assume K%w = 0. Then
we have

Regret(K)

=

K
w−1∑
i=0

Regret([gi, gi+1])

= Õ

(
A2
√
dw

3
2

α

K
w−1∑
i=0

gi+1∑
k=gi

‖θk − θk+1‖2 +
(
wα2 + d

)
·

K
w−1∑
i=0

(√√√√ gi+1∑
k=gi

σ2
k +R + 1

))

≤ Õ

(
A2
√
dw

3
2

α

K−1∑
k=1

‖θk − θk+1‖2 +
(
wα2 + d

)
·
(√√√√√K

w

K
w−1∑
i=0

gi+1∑
k=gi

σ2
k +

KR

w
+

K

w

))

≤ Õ

(
A2
√
dw

3
2BK

α
+
(
wα2 + d

)
·

√√√√K

w

K∑
k=1

σ2
k +

(
1 + R

)
·
(
Kα2 +

Kd

w

))
,

where the first inequality holds due to the Cauchy-Schwarz in-
equality, the last inequality holds because

∑K−1
k=1 ‖θk − θk+1‖2 ≤
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BK .

A.6.7 Proof of Theorem A.6.1

With the candidate pool set P designed as in Eq.(A.241), Eq.(A.242),
Eq.(A.243), and H = dd 2

5K
2
5e, we have |P| = O(logK), and for

any w ∈ W , w ≤ H.
We denote the optimal (w, α) with the knowledge of VK and

BK in Corollary 8.2 as (w∗, α∗). We denote the best approxima-
tion of (w∗, α∗) in the candidate set P as (w+, α+). Then we can
decompose the regret as follows

Regret(K) =
K∑
k=1

〈a∗t ,θk〉 − 〈at,θk〉

=
K∑
k=1

〈a∗t ,θk〉 −
dKH e∑
i=1

iH∑
k=(i−1)H+1

〈at(w+, α+),θk〉︸ ︷︷ ︸
(1)

+

dKH e∑
i=1

iH∑
k=(i−1)H+1

〈at(w+, α+),θk〉 − 〈at(wi, αi),θk〉︸ ︷︷ ︸
(2)

.

(A.291)

The first term (1) is the dynamic regret of Restarted SAVE+ with
the best parameters in the candidate pool P . The second term
(2) is the regret overhead of meta-algorithm due to adaptive ex-
ploration of unknown optimal parameters.

By the design of the candidate pool set P in Eq.(A.241),
Eq.(A.242), Eq.(A.243), we have that there exists a pair (w+, α+) ∈
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P such that w+ < w∗ < 2w+, and α+ < α∗ < 2α+. Therefore,
employing the regret bound in Theorem 8.5.1, we can get

(1) ≤
dKH e∑
i=1

Õ(
√
dw+1.5Bi/α

+ + α+2(H +
√

w+HVi) + d
√
HVi/w+ + dH/w+)

≤ Õ(
√
dw+1.5BK/α

+ + α+2(K +

√√√√
w+H

K

H

dKH e∑
i=1

Vi) + d

√√√√
H
K

H

dKH e∑
i=1

Vi/w+

+ dK/w+)

= Õ(
√
dw+1.5BK/α

+ + α+2(K +
√

w+KVK) + d
√

KVK/w+ + dK/w+)

= Õ(
√
dw∗1.5BK/α

∗ + α∗2(K +
√

w∗KVK) + d
√
KVK/w∗ + dK/w∗)

= Õ(d4/5V
2/5
K B

1/5
K K2/5 + d2/3B

1/3
K K2/3) , (A.292)

where we denote Bi as the total variation budget in block i, Vi is
the total variance in block i, the second inequality is by Cauchy–
Schwarz inequality, the first equality holds due to

∑dKH e
i=1 Bi = BK ,∑dKH e

i=1 Vi = VK , the second equality holds due to w+ < w∗ < 2w+

and α+ < α∗ < 2α+, the last equality holds by Corollary 8.2.
We then try to bound the second term (2). We denote by E

the event such that Lemma A.6.9 holds, and denote by Ri :=∑iH
k=(i−1)H+1〈at(w+, α+),θk〉 − 〈at(wi, αi),θk〉 the instantaneous

regret of the meta learner in the block i. Then we have

(2) = E
[ dKH e∑

i=1

Ri

]

= E
[ dKH e∑

i=1

Ri|E
]
P (E) + E

[ dKH e∑
i=1

Ri|E
]
P (E)

≤ Õ

(
Lmax

√
K

H
|P|
)
· (1− 2

K
) + Õ(K) · 2

K
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= Õ(
√

H |P|K)

= Õ(d
1
5K

7
10 ) , (A.293)

where Lmax := maxi∈[dKH e] Li, the first inequality holds due to
the standard regret upper bound result for Exp3 [183], the third
equality holds due to Lemma A.6.9, the last equality holds since
H = dd 2

5K
2
5e, and |P| = O(logK).

Finally, combining the above results for term (1) and term (2),
we have

Regret(K) = Õ(d4/5V
2/5
K B

1/5
K K2/5 + d2/3B

1/3
K K2/3 + d

1
5K

7
10 ).

(A.294)

A.6.8 Technical Lemmas

Theorem A.6.3 (Theorem 4.3, [76]). Let {Gk}∞k=1 be a filtration,
and {xk, ηk}k≥1 be a stochastic process such that xk ∈ Rd is Gk-
measurable and ηk ∈ R is Gk+1-measurable. Let L, σ, λ, ϵ > 0,
µ∗ ∈ Rd. For k ≥ 1, let yk = 〈µ∗, xk〉+ ηk and suppose that ηk, xk

also satisfy

E[ηk|Gk] = 0, E[η2k|Gk] ≤ σ2, |ηk| ≤ R, ‖xk‖2 ≤ L. (A.295)

For k ≥ 1, let Zk = λI+
∑k

i=1 xix>i , bk =
∑k

i=1 yixi, µk = Z−1k bk,
and

βk = 12
√

σ2d log(1 + kL2/(dλ)) log(32(log(R/ϵ) + 1)k2/δ)

+ 24 log(32(log(R/ϵ) + 1)k2/δ) max
1≤i≤k

{|ηi|min{1, ‖xi‖Z−1
i−1
}}

+ 6 log(32(log(R/ϵ) + 1)k2/δ)ϵ.
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Then, for any 0 < δ < 1, we have with probability at least 1 − δ

that,

∀k ≥ 1,
∥∥∑k

i=1xiηi
∥∥

Z−1
k
≤ βk, ‖µk − µ∗‖Zk

≤ βk +
√
λ‖µ∗‖2.

Lemma A.6.4 (Lemma 11, [43]). For any λ > 0 and sequence
{xk}Kk=1 ⊂ Rd for k ∈ [K], define Zk = λI +

∑k−1
i=1 xix>i . Then,

provided that ‖xk‖2 ≤ L holds for all k ∈ [K], we have
K∑
k=1

min
{
1, ‖xk‖2Z−1

k

}
≤ 2d log

(
1 +KL2/(dλ)

)
.

Theorem A.6.5 (Theorem 2.1, [80]). Let {Gk}∞k=1 be a filtration,
and {xk, ηk}k≥1 be a stochastic process such that xk ∈ Rd is Gk-
measurable and ηk ∈ R is Gk+1-measurable. Let L, σ, λ, ϵ > 0,
µ∗ ∈ Rd. For k ≥ 1, let yk = 〈µ∗, xk〉+ ηk, where ηk, xk satisfy

E[ηk|Gk] = 0, |ηk| ≤ R,

k∑
i=1

E[η2i |Gi] ≤ vk, for ∀ k ≥ 1

For k ≥ 1, let Zk = λI+
∑k

i=1 xix>i , bk =
∑k

i=1 yixi, µk = Z−1k bk,
and

βk = 16ρ
√

vk log(4w2/δ) + 6ρR log(4w2/δ),

where ρ ≥ supk≥1 ‖xk‖Z−1
k−1

. Then, for any 0 < δ < 1, we have
with probability at least 1− δ that,

∀k ≥ 1,
∥∥∑k

i=1xiηi
∥∥

Z−1
k
≤ βk, ‖µk − µ∗‖Zk

≤ βk +
√
λ‖µ∗‖2.

Lemma A.6.6 (Adopted from Lemma B.4, [80]). Let weight wi

be defined in Algorithm 12. With probability at least 1−2δ, for all
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k ≥ 1, ℓ ∈ [L], the following two inequalities hold simultaneously:∑
i∈Ψ̂k+1,ℓ

w2
i σ

2
i ≤ 2

∑
i∈Ψ̂k+1,ℓ

w2
i ϵ

2
i +

14

3
R2 log(4w2L/δ),

∑
i∈Ψ̂k+1,ℓ

w2
i ϵ

2
i ≤

3

2

∑
i∈Ψ̂k+1,ℓ

w2
i σ

2
i +

7

3
R2 log(4w2L/δ).

For simplicity, we denote EVaR as the event such that the two
inequalities in Lemma A.6.6 holds.

Lemma A.6.7 (Adopted from Lemma B.5, [80]). Suppose that
‖θ∗‖2 ≤ B. Let weight wi be defined in Algorithm 12. On the
event Econf and EVaR (defined in Eq.(A.276), Lemma A.6.6), for
all k ≥ 1, ℓ ∈ [L] such that 2ℓ ≥ 64

√
log (4(w + 1)2L/δ), we have

the following inequalities:∑
i∈Ψk+1,ℓ

w2
i σ

2
i ≤ 8

∑
i∈Ψk+1,ℓ

w2
i

(
ri − 〈θ̂k+1,ℓ, ai〉

)2
+ 6R2 log(4(w + 1)2L/δ) + 2−2ℓ+2B2,

∑
i∈Ψk+1,ℓ

w2
i

(
ri − 〈θ̂k+1,ℓ, ai〉

)2
≤ 3

2

∑
i∈Ψk+1,ℓ

w2
i σ

2
i +

7

3
R2 log(4w2L/δ) + 2−2ℓB2.

Lemma A.6.8 ([294]). Let M, v > 0 be fixed constants. Let
{xi}ni=1 be a stochastic process, {Gi}i be a filtration so that for all
i ∈ [n], xi is Gi-measurable, while almost surely

E [xi|Gi−1] = 0, |xi| ≤M,

n∑
i=1

E[x2i |Gi−1] ≤ v.

Then for any δ > 0, with probability at least 1− δ, we have
n∑

i=1

xi ≤
√
2v log(1/δ) + 2/3 ·M log(1/δ).
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Lemma A.6.9. Let N = dKH e. Denote by Li the absolute value of
cumulative rewards for episode i, i.e., Li =

∑iH
k=(i−1)H+1 rk, then

P

[
∀i ∈ [N ], Li ≤ H +R

√
H

2
log
(
K(

K

H
+ 1)

)
+

2

3
·R log

(
K(

K

H
+ 1)

)]
≥ 1− 1

K
.

(A.296)

Proof. By Lemma A.6.8, we have that with probability at least
1− 1/K

i·H∑
k=(i−1)·H+1

ϵi ≤

√√√√2
i·H∑

k=(i−1)·H+1

σ2
k log(NK) + 2/3 ·R log(NK)

≤
√

2H
R2

4
log(NK) + 2/3 ·R log(NK)

≤ R

√
H

2
log
(
K · (K

H
+ 1)

)
+

2

3
·R log

(
K · (K

H
+ 1)

)
,

(A.297)

where we use union bound, and in the second inequality we use
the fact that since |ϵk| ≤ R, we have σ2

k ≤ R2

4 . Finally, together
with the assumption that rk ≤ 1 for all k ∈ [K], we complete the
proof.
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A.7 Clustering Of Neural Dueling Bandits (CONDB)
Algorithm

Here we provide the complete statement of our CONDB algo-
rithm.

A.8 Proof of Theorem 9.4.1

First, we prove the following lemma.

Lemma A.8.1. With probability at least 1−δ for some δ ∈ (0, 1),
at any t ∈ [T ]:∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤
√

λκµ +
√

2 log(u/δ) + d log(1 + Ti,tκµ/dλ)

κµ

√
λmin(Vi,t−1)

, ∀i ∈ U ,

(A.301)
where Vi,t−1 =

λ
κµ

I+
∑

s∈[t−1]
is=i

(ϕ(xs,1)−ϕ(xs,2))(ϕ(xs,1)−ϕ(xs,2))
>,

and Ti,t denotes the number of rounds of seeing user i in the first
t rounds.

Proof. First, we prove the following result.
For a fixed user i, with probability at least 1 − δ for some

δ ∈ (0, 1), at any t ∈ [T ]:∥∥∥θ̂i,t − θj(i)
∥∥∥
Vi,t−1

≤
√
λκµ +

√
2 log(1/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ
,

(A.302)
Recall that fi(x) = θ>i ϕ(x). In iteration s, define ϕ̃s = ϕ(xs,1)−
ϕ(xs,2). And we define f̃i,s = fi(xs,1)− fi(xs,2) = θ>i ϕ̃s.

For any θf ′ ∈ Rd, define

Gi,t(θf ′) =
∑

s∈[t−1]:
is=i

(
µ(θ>f ′ϕ̃s)− µ(θ>i ϕ̃s)

)
ϕ̃s + λθf ′.
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For λ′ ∈ (0, 1), setting θf̄ = λ′θf ′
1
+ (1 − λ′)θf ′

2
. and using the

mean-value theorem, we get:

Gi,t(θf ′
1
)−Gi,t(θf ′

2
) =

 ∑
s∈[t−1]:
is=i

∇µ(θ>f̄ ϕ̃s)ϕ̃sϕ̃
>
s + λI

 (θf ′
1
− θf ′

2
) (θi is constant)

(A.303)

Define Mi,t−1 =
[∑

s∈[t−1]:
is=i
∇µ(θ>

f̄
ϕ̃s)ϕ̃sϕ̃

>
s + λI

]
, and recall that

Vi,t−1 =
∑

s∈[t−1]:
is=i

ϕ̃sϕ̃
>
s +

λ
κµ

I. Then we have that Mi,t−1 � κµVi,t−1

and that V −1i,t−1 � κµM
−1
i,t−1, where we use the notation M � V

to denote that M − V is a positive semi-definite matrix. Then
we have

∥∥∥Gi,t(θ̂i,t)− λθi

∥∥∥2
V −1
i,t−1

=
∥∥∥Gi,t(θi)−Gt(θ̂i,t)

∥∥∥2
V −1
i,t−1

=
∥∥∥Mi,t−1(θi − θ̂i,t)

∥∥∥2
V −1
i,t−1

(Gi,t(θi) = λθi by definition)

= (θi − θ̂i,t)
>Mi,t−1V

−1
i,t−1Mi,t−1(θi − θ̂i,t)

≥ (θi − θ̂i,t)
>Mi,t−1κµM

−1
i,t−1Mi,t−1(θi − θ̂i,t)

= κµ(θi − θ̂i,t)
>Mi,t−1(θi − θ̂i,t)

≥ κµ(θi − θ̂i,t)
>κµVi,t−1(θi − θ̂i,t)

= κ2
µ(θi − θ̂i,t)

>Vi,t−1(θi − θ̂i,t)

= κ2
µ

∥∥∥θi − θ̂i,t

∥∥∥2
Vi,t−1

(
as ||x||2A = x>Ax

)
The first inequality is because V −1i,t−1 � κµM

−1
i,t−1, and the second

inequality follows from Mi,t−1 � κµVi,t−1.
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Note that κµ

λ I � Vi,t−1, which allows us to show that

‖λθi‖V −1
i,t−1

= λ
√
θ>i V

−1
i,t−1θi ≤ λ

√
θ>i

κµ

λ
θi ≤

√
λκµ ‖θi‖2 ≤

√
λκµ.

(A.304)
Using the two equations above, we have that∥∥∥θi − θ̂i,t

∥∥∥
Vi,t−1

≤ 1

κµ

∥∥∥Gi,t(θ̂i,t)− λθi

∥∥∥
V −1
i,t−1

≤ 1

κµ

∥∥∥Gi,t(θ̂i,t)
∥∥∥
V −1
i,t−1

+
1

κµ
‖λθi‖V −1

i,t−1

≤ 1

κµ

∥∥∥Gi,t(θ̂i,t)
∥∥∥
V −1
i,t−1

+

√
λ

κµ

(A.305)

Then, let f i
t,s = θ̂>i,tϕ̃s, we have:

1

κ2
µ

∥∥∥Gi,t(θ̂i,t)
∥∥∥2
V −1
i,t−1

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

(µ(θ̂>i,tϕ̃s)− µ(θ>i ϕ̃s))ϕ̃s + λθ̂i,t

∥∥∥∥∥∥∥
2

V −1
i,t−1

)

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

(µ(f i
t,s)− µ(f̃i,s))ϕ̃s + λθ̂i,t

∥∥∥∥∥∥∥
2

V −1
i,t−1

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

(µ(f i
t,s)− (ys − ϵs))ϕ̃s + λθ̂i,t

∥∥∥∥∥∥∥
2

V −1
i,t−1

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

(
µ(f i

t,s)− ys
)
ϕ̃s +

∑
s∈[t−1]:
is=i

ϵsϕ̃s + λθ̂i,t

∥∥∥∥∥∥∥
2

V −1
i,t−1

≤ 1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
i,t−1

.
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The last step holds due to the following reasoning. Recall that
θ̂i,t is computed using MLE by solving the following equation:

θ̂it,t = argmin
θ

[
−
∑

s∈[t−1]
is=it

(
ys logµ

(
θ>[ϕ(xs,1)− ϕ(xs,2)]

)

+ (1− ys) logµ
(
θ>[ϕ(xs,2)− ϕ(xs,1)]

))
+

λ

2
‖θ‖22

]
. (A.306)

Setting its gradient to 0, the following is satisfied:∑
s∈[t−1]:
is=i

(
µ
(
θ̂>i,tϕ̃s

)
− ys

)
ϕ̃s + λθ̂i,t = 0, (A.307)

which is used in the last step.
Now we have

1

κ2
µ

∥∥∥Gi,t(θ̂i,t)
∥∥∥2
V −1
i,t−1

≤ 1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
i,t−1

. (A.308)

Denote V ≜ λ
κµ

I. Note that the sequence of observation noises
{ϵs} is 1-sub-Gaussian.

Next, we can apply Theorem 1 from [43], to obtain∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
i,t−1

≤ 2 log
(
det(Vi,t−1)

1/2

δ det(V )1/2

)
, (A.309)

which holds with probability of at least 1− δ.
Next, based on our assumption that

∥∥∥ϕ̃s

∥∥∥
2
≤ 2, according to

Lemma 10 from [43], we have that

det(Vi,t−1) ≤ (λ/κµ + 4Ti,t/d)
d , (A.310)
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where Ti,t denotes the number of rounds of serving user i in the
first t rounds. Therefore,√

detVi,t−1

det(V )
≤

√
(λ/κµ + 4Ti,t/d)

d

(λ/κµ)d
= (1 + 4Ti,tκµ/(dλ))

d
2

(A.311)
This gives us∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
i,t−1

≤ 2 log
(
det(Vi,t−1)

1/2

δ det(V )1/2

)
≤ 2 log(1/δ)+d log (1 + 4Ti,tκµ/(dλ))

(A.312)
Then, with the above reasoning, we have that with probability

at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T ]:∥∥∥θ̂i,t − θj(i)
∥∥∥
Vi,t−1

≤
√
λκµ +

√
2 log(1/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ
,

(A.313)
Taking a union bound over u users, we have that with proba-

bility at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T ]:∥∥∥θ̂i,t − θj(i)
∥∥∥
Vi,t−1

≤
√
λκµ +

√
2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ
, ∀i ∈ U .

(A.314)
Then we have that with probability at least 1 − δ for all t ∈ [T ]

and all i ∈ U

∥∥∥θ̂i,t − θj(i)
∥∥∥ ≤

∥∥∥θ̂i,t − θj(i)
∥∥∥
Vi,t−1√

λmin(Vi,t−1)

≤
√

λκµ +
√
2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ

√
λmin(Vi,t−1)

.

(A.315)
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Then, we prove the following lemma, which gives a sufficient
time T0 for the COLDB algorithm to cluster all the users correctly
with high probability.

Lemma A.8.2. With the carefully designed edge deletion rule,
after

T0 ≜ 16u log(u
δ
) + 4umax{ 128d

κ2
µλ̃xγ2

log(u
δ
),
16

λ̃2
x

log(8ud
λ̃2
xδ

)}

= O

(
u

(
d

κ2
µλ̃xγ2

+
1

λ̃2
x

)
log 1

δ

)
rounds, with probability at least 1−3δ for some δ ∈ (0, 13), COLDB
can cluster all the users correctly.

Proof. Then, with the item regularity assumption stated in As-
sumption 9.4, Lemma J.1 in [4], together with Lemma 7 in [135],
and applying a union bound, with probability at least 1 − δ, for
all i ∈ U , at any t such that Ti,t ≥ 16

λ̃2
x

log(8ud
λ̃2
xδ
), we have:

λmin(Vi,t) ≥ 2λ̃xTi,t . (A.316)

Then, together with Lemma A.8.1, we have: if Ti,t ≥ 16
λ̃2
x

log(8ud
λ̃2
xδ
),

then with probability ≥ 1− 2δ, we have:∥∥∥θ̂i,t − θj(i)
∥∥∥ ≤ √λκµ +

√
2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ

√
λmin(Vi,t−1)

≤
√

λκµ +
√

2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ

√
2λ̃xTi,t

.
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Now, let√
λκµ +

√
2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ

√
2λ̃xTi,t

<
γ

4
, (A.317)

Let λκµ ≤ 2 log(u/δ)+d log(1+4Ti,tκµ/dλ), which typically holds
(κµ is typically very small), we can get

2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

2κ2
µλ̃xTi,t

<
γ2

64
, (A.318)

and a sufficient condition for it to hold is
2 log(u/δ)
2κ2

µλ̃xTi,t

<
γ2

128
(A.319)

and
d log(1 + 4Ti,tκµ/dλ)

2κ2
µλ̃xTi,t

<
γ2

128
. (A.320)

Solving Eq.(A.319), we can get

Ti,t ≥
128 log(u/δ)

κ2
µλ̃xγ2

. (A.321)

Following Lemma 9 in [135], we can get the following sufficient
condition for Eq.(A.320):

Ti,t ≥
128d

κ2
µλ̃xγ2

log( 512

λκµλ̃xγ2
) . (A.322)

Let u/δ ≥ 512/λκµλ̃xγ
2, which is typically held. Then, combining

all together, we have that if

Ti,t ≥ max{ 128d

κ2
µλ̃xγ2

log(u
δ
),
16

λ̃2
x

log(8ud
λ̃2
xδ

)}, ∀i ∈ U , (A.323)
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then with probability at least 1− 2δ, we have∥∥∥θ̂i,t − θj(i)
∥∥∥ < γ/4, ∀i ∈ U . (A.324)

By Lemma 8 in [135], and Assumption 9.3 of user arrival uni-
formness, we have that for all

T0 ≜ 16u log(u
δ
) + 4umax{ 128d

κ2
µλ̃xγ2

log(u
δ
),
16

λ̃2
x

log(8ud
λ̃2
xδ

)}

= O

(
u

(
d

κ2
µλ̃xγ2

+
1

λ̃2
x

)
log 1

δ

)
,

the condition in Eq.(A.323) is satisfied with probability at least
1− δ.

Therefore we have that for all t ≥ T0, with probability ≥ 1−3δ:∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ

4
, ∀i ∈ U . (A.325)

Finally, we only need to show that with
∥∥∥θ̂i,t − θj(i)

∥∥∥
2
< γ

4 , ∀i ∈ U ,
the algorithm can cluster all the users correctly. First, when the
edge (i, l) is deleted, user i and user j must belong to different
ground-truth clusters, i.e., ‖θi − θl‖2 > 0. This is because by
the deletion rule of the algorithm, the concentration bound, and
triangle inequality

‖θi − θl‖2 =
∥∥∥θj(i) − θj(l)

∥∥∥
2

≥
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
−
∥∥∥θj(l) − θ̂l,t

∥∥∥
2
−
∥∥∥θj(i) − θ̂i,t

∥∥∥
2

≥
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
− f(Ti,t)− f(Tl,t) > 0 . (A.326)

Second, we can show that if ‖θi − θl‖ > γ, meaning that user i

and user l are not in the same ground-truth cluster, COLDB will
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delete the edge (i, l) after T0. This is because∥∥∥θ̂i,t − θ̂l,t

∥∥∥ ≥ ‖θi − θl‖ −
∥∥∥θ̂i,t − θj(i)

∥∥∥
2
−
∥∥∥θ̂l,t − θj(l)

∥∥∥
2

> γ − γ

4
− γ

4

=
γ

2
> f(Ti,t) + f(Tl,t) , (A.327)

which will trigger the edge deletion rule to delete edge (i, l). Com-
bining all the reasoning above, we can finish the proof.

Then, we prove the following lemmas for the cluster-based
statistics.

Lemma A.8.3. With probability at least 1 − 4δ for some δ ∈
(0, 1/4), at any t ≥ T0:∥∥θt − θit

∥∥
Vt−1
≤
√

λκµ +
√
2 log(u/δ) + d log(1 + 4Tκµ/dλ)

κµ
.

(A.328)

Proof. First, by Lemma A.8.2, we have that with probability
at least 1 − 3δ, all the users are clustered correctly, i.e., Ct =

Cj(it), ∀t ≥ T0. Recall that fi(x) = θ>i ϕ(x). In iteration s, define
ϕ̃s = ϕ(xs,1)− ϕ(xs,2). And we define f̃i,s = fi(xs,1)− fi(xs,2) =

θ>i ϕ̃s.
For any θf ′ ∈ Rd, define

Gt(θf ′) =
∑

s∈[t−1]:

is∈Ct

(
µ(θ>f ′ϕ̃s)− µ(θ>it ϕ̃s)

)
ϕ̃s + λθf ′.

For λ′ ∈ (0, 1), setting θf̄ = λ′θf ′
1
+ (1 − λ′)θf ′

2
. and using the

mean-value theorem, we get:

Gt(θf ′
1
)−Gt(θf ′

2
) =

 ∑
s∈[t−1]:

is∈Ct

∇µ(θ>f̄ ϕ̃s)ϕ̃sϕ̃
>
s + λI

 (θf ′
1
− θf ′

2
)



A.8. PROOF OF THEOREM 9.4.1 342

(A.329)

Define Mt−1 =

[∑
s∈[t−1]:

is∈Ct

∇µ(θ>
f̄
ϕ̃s)ϕ̃sϕ̃

>
s + λI

]
, and recall that

Vt−1 =
∑

s∈[t−1]:

is∈Ct

ϕ̃sϕ̃
>
s + λ

κµ
I. Then we have that Mt−1 � κµVt−1

and that V −1t−1 � κµM
−1
t−1. Then we have

∥∥Gt(θt)− λθit

∥∥2
V −1
t−1

=
∥∥Gt(θit)−Gt(θt)

∥∥2
V −1
t−1

=
∥∥Mt−1(θit − θt)

∥∥2
V −1
t−1

(Gt(θit) = λθit by definition)

= (θit − θt)
>Mt−1V

−1
t−1Mt−1(θit − θt)

≥ (θit − θt)
>Mt−1κµM

−1
t−1Mt−1(θit − θt)

= κµ(θit − θt)
>Mt−1(θit − θt)

≥ κµ(θit − θt)
>κµVt−1(θit − θt)

= κ2
µ(θit − θt)

>Vt−1(θit − θt)

= κ2
µ

∥∥θit − θt

∥∥2
Vt−1

(
as ||x||2A = x>Ax

)
The first inequality is because V −1t−1 � κµM

−1
t−1, and the second

inequality follows from Mt−1 � κµVt−1.
Note that κµ

λ I � Vt−1, which allows us to show that

‖λθit‖V −1
t−1

= λ
√
θ>itV

−1
t−1θit ≤ λ

√
θ>it

κµ

λ
θit ≤

√
λκµ ‖θit‖2 ≤

√
λκµ.

(A.330)
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Using the two equations above, we have that∥∥θit − θt

∥∥
Vt−1
≤ 1

κµ

∥∥Gt(θt)− λθit

∥∥
V −1
t−1
≤ 1

κµ

∥∥Gt(θt)
∥∥
V −1
t−1

+
1

κµ
‖λθit‖V −1

t−1

≤ 1

κµ

∥∥Gt(θt)
∥∥
V −1
t−1

+

√
λ

κµ

(A.331)

Then, let f t,s = θ
>
t ϕ̃s, we have:

1

κ2
µ

∥∥Gt(θt)
∥∥2
V −1
t−1
≤ 1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

(µ(θ
>
t ϕ̃s)− µ(θ>it ϕ̃s))ϕ̃s + λθt

∥∥∥∥∥∥∥
2

V −1
t−1

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

(µ(f t,s)− µ(f̃it,s))ϕ̃s + λθt

∥∥∥∥∥∥∥
2

V −1
t−1

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

(µ(f t,s)− (ys − ϵs))ϕ̃s + λθt

∥∥∥∥∥∥∥
2

V −1
t−1(

ys = µ(f̃it,s) + ϵsif is = it, andis = it, ∀is ∈ Ct, ∀t ≥ T0

)
=

1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

(
µ(f t,s)− ys

)
ϕ̃s +

∑
s∈[t−1]:

is∈Ct

ϵsϕ̃s + λθt

∥∥∥∥∥∥∥
2

V −1
t−1

≤ 1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
t−1

.

The last step holds due to the following reasoning. Recall that



A.8. PROOF OF THEOREM 9.4.1 344

θt is computed using MLE by solving the following equation:

θt = argmin
θ
−
∑
s∈[t−1]

is∈Ct

(
ys logµ

(
θ> [ϕ(xs,1)− ϕ(xs,2)]

)

+ (1− ys) logµ
(
θ> [ϕ(xs,2)− ϕ(xs,1)]

) )
+

1

2
λ ‖θ‖22 . (A.332)

Setting its gradient to 0, the following is satisfied:∑
s∈[t−1]:

is∈Ct

(
µ
(
θ
>
t ϕ̃s

)
− ys

)
ϕ̃s + λθt = 0, (A.333)

which is used in the last step.
Now we have

∥∥θit − θt

∥∥
Vt−1
≤ 1

κµ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

ϵsϕ̃s

∥∥∥∥∥∥∥
V −1
t−1

+

√
λ

κµ
. (A.334)

Denote V ≜ λ
κµ

I. Note that the sequence of observation noises
{ϵs} is 1-sub-Gaussian.

Next, we can apply Theorem 1 from [43], to obtain∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
t−1

≤ 2 log
(
det(Vt−1)

1/2

δ det(V )1/2

)
, (A.335)

which holds with probability of at least 1− δ.
Next, based on our assumption that

∥∥∥ϕ̃s

∥∥∥
2
≤ 2, according to

Lemma 10 from [43], we have that

det(Vt−1) ≤ (λ/κµ + 4T/d)d . (A.336)

Therefore,√
detVt−1

det(V )
≤

√
(λ/κµ + 4T/d)d

(λ/κµ)d
= (1 + 4Tκµ/(dλ))

d
2 (A.337)
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This gives us∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
t−1

≤ 2 log
(
det(Vt−1)

1/2

δ det(V )1/2

)
≤ 2 log(1/δ)+d log (1 + 4Tκµ/(dλ))

(A.338)
Combining all together, we have with probability at least 1−4δ

for some δ ∈ (0, 1/4), at any t ≥ T0:∥∥θt − θit

∥∥
Vt−1
≤
√

λκµ +
√
2 log(u/δ) + d log(1 + 4Tκµ/dλ)

κµ
.

(A.339)

Then, we prove the following lemma with the help of Lemma
A.8.3.

Lemma A.8.4. For any iteration t ≥ T0, for all x,x′ ∈ Xt, with
probability of at least 1− 4δ, we have

| (fit(x)− fit(x
′))−θ>t (ϕ(x)− ϕ(x′)) | ≤ βT

κµ
‖ϕ(x)− ϕ(x′)‖V −1

t−1
,

where βT =
√

λκµ +
√
2 log(u/δ) + d log(1 + 4Tκµ/dλ).

Proof.

| (fit(x)− fit(x
′))− θ

>
t (ϕ(x)− ϕ(x′)) |

= |θ>it [(ϕ(x)− ϕ(x′)]− θ
>
t [ϕ(x)− ϕ(x′)] |

= |
(
θit − θt

)>
[ϕ(x)− ϕ(x′)] |

≤
∥∥θit − θt

∥∥
Vt−1
‖ϕ(x)− ϕ(x′)‖V −1

t−1

≤ βT
κµ
‖ϕ(x)− ϕ(x′)‖V −1

t−1
,

in which the last inequality follows from Lemma A.8.3.
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We also prove the following lemma to upper bound the sum-
mation of squared norms which will be used in proving the final
regret bound.

Lemma A.8.5. With probability at least 1− 4δ, we have
T∑

t=T0

I{it ∈ Cj} ‖ϕ(xt,1)− ϕ(xt,2)‖2V −1
t−1
≤ 2d log (1 + 4Tκµ/(dλ)) , ∀j ∈ [m] ,

where I denotes the indicator function.

Proof. We denote ϕ̃t = ϕ(xt,1) − ϕ(xt,2). Recall that we have
assumed that ‖ϕ(xt,1)− ϕ(xt,2)‖2 ≤ 2. It is easy to verify that
Vt−1 � λ

κµ
I and hence V −1t−1 �

κµ

λ I. Therefore, we have that∥∥∥ϕ̃t

∥∥∥2
V −1
t−1

≤ κµ

λ

∥∥∥ϕ̃t

∥∥∥2
2
≤ 4κµ

λ . We choose λ such that 4κµ

λ ≤ 1, which

ensures that
∥∥∥ϕ̃t

∥∥∥2
V −1
t−1

≤ 1. Our proof here mostly follows from
Lemma 11 of [43] and Lemma J.2 of [4]. To begin with, note that
x ≤ 2 log(1 + x) for x ∈ [0, 1]. Denote Vt,j =

∑
s∈[t−1]:
is∈Cj

ϕ̃sϕ̃
>
s + λ

κµ
I.

Then we have that
T∑

t=T0

I{it ∈ Cj}
∥∥∥ϕ̃t

∥∥∥2
V −1
t−1

≤
T∑

t=T0

2 log
(
1 + I{it ∈ Cj}

∥∥∥ϕ̃t

∥∥∥2
V −1
t−1

)
= 2 (log detVT,j − log detV )

= 2 log detVT,j

detV
≤ 2 log

(
(1 + 4Tκµ/(dλ))

d
)

= 2d log (1 + 4Tκµ/(dλ)) .

(A.340)

The second inequality follows the same reasoning as (A.337). This
completes the proof.
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Now we are ready to prove Theorem 9.4.1. First, we have

RT =
T∑
t=1

rt ≤ T0 +
T∑

t=T0

rt , (A.341)

where we use that the reward at each round is bounded by 1.
Then, we only need to upper bound the regret after T0. By

Lemma A.8.2, we know that with probability at least 1− 4δ, the
algorithm can cluster all the users correctly, Ct = Cj(it), and the
statements of all the above lemmas hold. We have that for any
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t ≥ T0:

rt = fit(x
∗
t )− fit(xt,1) + fit(x

∗
t )− fit(xt,2)

(a)

≤ θ
>
t (ϕ(x∗t )− ϕ(xt,1)) +

βT
κµ
‖ϕ(x∗t )− ϕ(xt,1)‖V −1

t−1
+ θ

>
t (ϕ(x∗t )− ϕ(xt,2))

+
βT
κµ
‖ϕ(x∗t )− ϕ(xt,2)‖V −1

t−1

= θ
>
t (ϕ(x∗t )− ϕ(xt,1)) +

βT
κµ
‖ϕ(x∗t )− ϕ(xt,1)‖V −1

t−1
+

θ
>
t (ϕ(x∗t )− ϕ(xt,1)) + θ

>
t (ϕ(xt,1)− ϕ(xt,2))+

βT
κµ
‖ϕ(x∗t )− ϕ(xt,1) + ϕ(xt,1)− ϕ(xt,2)‖V −1

t−1

(b)

≤ 2θ
>
t (ϕ(x∗)− ϕ(xt,1)) + 2

βT
κµ
‖ϕ(x∗)− ϕ(xt,1)‖V −1

t−1
+

θ
>
t (ϕ(xt,1)− ϕ(xt,2)) +

βT
κµ
‖ϕ(xt,1)− ϕ(xt,2)‖V −1

t−1

(c)

≤ 2θ
>
t (ϕ(xt,2)− ϕ(xt,1)) + 2

βT
κµ
‖ϕ(xt,2)− ϕ(xt,1)‖V −1

t−1
+

θ
>
t (ϕ(xt,1)− ϕ(xt,2)) +

βT
κµ
‖ϕ(xt,1)− ϕ(xt,2)‖V −1

t−1

≤ θ
>
t (ϕ(xt,2)− ϕ(xt,1)) + 3

βT
κµ
‖ϕ(xt,2)− ϕ(xt,1)‖V −1

t−1

(d)

≤ 3
βT
κµ
‖ϕ(xt,1)− ϕ(xt,2)‖V −1

t−1

Step (a) follows from Lemma A.8.4. Step (b) makes use of the tri-
angle inequality. Step (c) follows from the way in which we choose
the second arm xt,2: xt,2 = argmaxx∈Xt

θ
>
t (ϕ(x)− ϕ(xt,1)) +

βT

κµ
‖ϕ(x)− ϕ(xt,1)‖V −1

t−1
. Step (d) results from the way in which

we select the first arm: xt,1 = argmaxx∈Xt
θ
>
t ϕ(x).
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Then we have
T∑

t=T0

rt ≤ 3
βT
κµ

T∑
t=T0

‖ϕ(xt,1)− ϕ(xt,2)‖V −1
t−1

= 3
βT
κµ

T∑
t=T0

∑
j∈[m]

I{it ∈ Cj} ‖ϕ(xt,1)− ϕ(xt,2)‖V −1
t−1

≤ 3
βT
κµ

√√√√ T∑
t=T0

∑
j∈[m]

I{it ∈ Cj}
T∑

t=T0

∑
j∈[m]

I{it ∈ Cj} ‖ϕ(xt,1)− ϕ(xt,2)‖2V −1
t−1

≤ 3
βT
κµ

√
T ·m · 2d log (1 + 4Tκµ/(dλ)) , (A.342)

where in the second inequality we use the Cauchy-Swarchz in-
equality, and in the last step we use

∑T
t=T0

∑
j∈[m] I{it ∈ Cj} ≤ T

and Lemma A.8.5.
Therefore, finally, we have with probability at least 1− 4δ

RT ≤ T0 + 3
βT
κµ

√
T ·m · 2d log (1 + 4Tκµ/(dλ))

≤ O(u(
d

κ2
µλ̃xγ2

+
1

λ̃2
x

) logT +
1

κµ
d
√
mT )

= O(
1

κµ
d
√
mT ) , (A.343)

A.9 Proof of Theorem 9.4.2

A.9.1 Auxiliary Definitions and Explanations

Denifition of the NTK matrix Hj for cluster j. Recall that we use
Tj to denote the total number of iterations in which the users
in cluster j are served. For cluster j, let {x(i)}

TjK
i=1 be a set of

all Tj ×K possible arm feature vectors: {xt,a}1≤t≤Tj ,1≤a≤K , where
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i = K(t − 1) + a. Firstly, we define ht = [f j(x(i))]
>
i=1,...,TjK

, i.e.,
ht is the TjK-dimensional vector containing the reward function
values of the arms corresponding to cluster j. Next, define

H̃(1)
p,q = �(1)p,q = 〈x(p), x(q)〉,A(l)

p,q =

(
�(l)p,q �(l)p,q
�(l)p,q �(l)q,q

)
,

�(l+1)
p,q = 2E

(u,v)∼N (0,A(l)
p,q)

[max{u, 0}max{v, 0}],

H̃(l+1)
p,q = 2H̃(l)

p,qE(u,v)∼N (0,A(l)
p,q)

[1(u ≥ 0)1(v ≥ 0)] + �(l+1)
p,q .

With these definitions, the NTK matrix for cluster j is then de-
fined as Hj = (H̃(L) + �(L))/2.

The Initial Parameters θ0. Next, we discuss how the initial pa-
rameters θ0 are obtained. We adopt the same initialization method
from [161, 160]. Specifically, for each l = 1, . . . , L − 1, let Wl =(

W 0
0 W

)
in which every entry of W is independently and ran-

domly sampled from N (0, 4/mNN), and choose WL = (w>,−w>)
in which every entry of w is independently and randomly sampled
from N (0, 2/mNN).

Justifications for Assumption 9.5. The last assumption in As-
sumption 9.5, together with the way we initialize θ0 as discussed
above, ensures that the initial output of the NN is 0: h(x; θ0) =

0, ∀x ∈ X . The assumption of xj = xj+d/2 from Assumption 9.5 is
a mild assumption which is commonly adopted by previous works
on neural bandits [160, 161]. To ensure that this assumption
holds, for any arm x, we can always firstly normalize it such that
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||x|| = 1, and then construct a new context x′ = (x>, x>)>/
√
2

to satisfy this assumption [160].

A.9.2 Proof

To begin with, we first list the specific conditions we need for the
width mNN of the NN:

mNN ≥ CT 4K4L6 log(T 2K2L/δ)/λ4
0,

mNN(logm)−3 ≥ Cκ−3µ T 8L21λ−5,

mNN(logmNN)
−3 ≥ Cκ−3µ T 14L21λ−11L6

µ,

mNN(logmNN)
−3 ≥ CT 14L18λ−8,

(A.344)

for some absolute constant C > 0. To ease exposition, we express
these conditions above asmNN ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)).

In our proof here, we use the gradient of the NN at θ0 to
derive the feature mapping for the arms, i.e., we let ϕ(x) =

g(x;θ0)/
√
mNN. We use θ̂i,t to denote the paramters of the NN

after training in iteration t (see Algorithm 19).
We use the following lemma to show that for every cluster

j ∈ C, its reward function f j can be expressed as a linear function
with respect to the initial gradient g(x;θ0).

Lemma A.9.1 (Lemma B.3 of [161]). As long as the width m of
the NN is large enough:

mNN ≥ C0T
4K4L6 log(T 2K2L/δ)/λ4

0,

then for all clusters j ∈ [m], with probability of at least 1 − δ,
there exits a θj

f such that

f j(x) = 〈g(x;θ0),θ
j
f−θ0〉,

√
mNN

∥∥∥θj
f − θ0

∥∥∥
2
≤
√

2h>j H−1j hj ≤ B.
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for all x ∈ Xt, t ∈ [T ] with it ∈ Cj.

Lemma A.9.1 is the formal statement of Lemma 9.2.1 from
Sec. 9.2.2. Note that the constant B is applicable to allm clusters.

The following lemma converts our assumption about cluster
separation (Assumption 9.6) into the difference between the lin-
earized parameters for different clusters.

Lemma A.9.2. If users i and l belong to different clusters, then
we have that

√
mNN ‖θf,i − θf,l‖ ≥ γ′.

Proof. To begin with, Lemma A.9.1 tells us that

|fi(x)− fl(x)| = |〈g(x;θ0),θf,i − θf,l〉| ≤ ‖g(x;θ0)‖ ‖θf,i − θf,l‖ .
(A.345)

This leads to

‖θf,i − θf,l‖ ≥
|fi(x)− fl(x)|
‖g(x;θ0)‖

≥ γ′
√
mNN

, (A.346)

in which we have made use of Assumption 9.6 and our assump-
tion that 1

mNN
〈g(x;θ0), g(x;θ0)〉 ≤ 1 in the last inequality. This

completes the proof.

The following lemma shows that for every user, the output of
the NN trained using its own local data can be approximated by
a linear function.

Lemma A.9.3. Let ε′mNN,t
≜ C2m

−1/6
NN
√
logmNNL

3
(
t
λ

)4/3 where
C2 > 0 is an absolute constant. Then

|〈g(x;θ0), θ̂i,t − θ0〉 − h(x; θ̂i,t)| ≤ ε′mNN,t
, ∀t ∈ [T ],x,x′ ∈ Xt.
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Proof. This lemma can be proved following a similar line of proof
as Lemma 1 from [60]. Here the t in ε′mNN,t

can in fact be replaced
by Ti,t ≤ t, however, we have simply used its upper bound t for
simplicity.

Lemma A.9.4. Let βT ≜ 1
κµ

√
d̃+ 2 log(u/δ). Assuming that the

conditions on mNN from eq. (A.344) are satisfied. With probability
of at least 1− δ, we have that

√
mNN

∥∥∥θf,i − θ̂i,t

∥∥∥
2
≤

βT +B
√

λ
κµ

+ 1√
λmin(Vi,t−1)

, ∀t ∈ [T ].

where Vi,t−1 =
λ
κµ

I+
∑

s∈[t−1]
is=i

(ϕ(xs,1)−ϕ(xs,2))(ϕ(xs,1)−ϕ(xs,2))
>,

ϕ(x) = 1√
mNN

g(x;θ0), and Ti,t denotes the number of rounds of
seeing user i in the first t rounds.

Proof. In iteration t, for any user i ∈ U , the user leverages its
current history of observations {(xs,1,xs,2, ys)}s∈[t−1],is=i to train
the NN by minimizing the loss function ((A.299)), to obtain the
NN parameters θ̂i,t. Note that the NN has been trained when
the most recent observation in {(xs,1,xs,2, ys)}s∈[t−1],is=i was col-
lected, i.e., the last time when user i was encountered. Of note,
according to Lemma A.9.1, the latent reward function of user i

can be expressed as fi(x) = 〈g(x;θ0),θf,i − θ0〉. Therefore, from
the perspective of each individual user i, the user is faced with
a neural dueling bandit problem instance. As a result, we can
modifying the proof of Lemma 6 from [60] to show that with
probability of at least 1− δ,

√
mNN

∥∥∥θf,i − θ̂i,t

∥∥∥
Vi,t−1

≤ βT +B

√
λ

κµ
+ 1, ∀t ∈ [T ], i ∈ U .
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Here in our definition of βT ≜ 1
κµ

√
d̃+ 2 log(u/δ), we have re-

placed the error probability δ (from [60]) by δ/u to account for
the use of an extra union bound over all u users.

This allows us to show that

√
mNN

∥∥∥θf,i − θ̂i,t

∥∥∥
2
≤

√
mNN

∥∥∥θf,i − θ̂i,t

∥∥∥
Vi,t−1√

λmin(Vi,t−1)

≤
βT +B

√
λ
κµ

+ 1√
λmin(Vi,t−1)

(A.347)

This completes the proof.

Lemma A.9.5. With the carefully designed edge deletion rule in
Algorithm 19, after

T0 ≜ 16u log(u
δ
) + 4umax

32
(
d̃+ 2 log(u/δ)

)
λ̃xγ2κ2

µ

,
16

λ̃2
x

log(24udm
2(L− 1)

λ̃2
xδ

)


= O

(
u

(
d̃

κ2
µλ̃xγ2

+
1

λ̃2
x

)
log(1

δ
)

)
,

rounds, with probability at least 1−3δ for some δ ∈ (0, 13), CONDB
can cluster all the users correctly.

Proof. Recall that we use p = dmNN + m2
NN(L − 1) + mNN to

denote the total number of parameters of the NN. Similar to
the proof of Lemma A.8.2, with the item regularity assumption
stated in Assumption 9.4, Lemma J.1 in [4], together with Lemma
7 in [135] (note that when using these technical results, we use
g(x;θ)/

√
mNN as the feature vector to replace the original feature

vector of x), and applying a union bound, with probability at
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least 1− δ, for all i ∈ U , at any t such that Ti,t ≥ 16
λ̃2
x

log(8up
λ̃2
xδ
), we

have:
λmin(Vi,t) ≥ 2λ̃xTi,t . (A.348)

Note that compared with the proof of A.8.2, in the lower bound
on Ti,t here, we have replaced the dimension d by p. This has
led to a logarithmic dependence on the width mNN of the NN. To
simplify the exposition, using the fact that p ≥ 3dm2

NN(L − 1),
we replace this condition on Ti,t by a slightly stricter condition:
Ti,t ≥ 16

λ̃2
x

log(8u×3dm
2
NN(L−1)

λ̃2
xδ

) = 16
λ̃2
x

log(24udm
2
NN(L−1)
λ̃2
xδ

).

Then, together with Lemma A.9.4, we have: if Ti,t ≥ 16
λ̃2
x

log(8u×3dm
2
NN(L−1)

λ̃2
xδ

),
then with probability ≥ 1− 2δ, we have:

√
mNN

∥∥∥θ̂i,t − θj(i)
∥∥∥ ≤ βT +B

√
λ
κµ

+ 1√
λmin(Vi,t−1)

≤
βT +B

√
λ
κµ

+ 1√
2λ̃xTi,t

.

Now, let
βT +B

√
λ
κµ

+ 1√
2λ̃xTi,t

<
γ

4
, (A.349)

Note that in Algorithm 19, we have defined the funciton f as

f(Ti,t) ≜
βT +B

√
λ
κµ

+ 1√
2λ̃xTi,t

(A.350)

This immediately leads to
√
mNN

∥∥∥θ̂i,t − θj(i)
∥∥∥ ≤ f(Ti,t) <

γ

4
. (A.351)

For simplicity, now let B
√

λ
κµ

+ 1 ≤ βT which is typically
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satisfied. This allows us to show that

Ti,t >
32β2

T

λ̃xγ2
=

32

(
1
κµ

√
d̃+ 2 log(u/δ)

)2

λ̃xγ2
=

32
(
d̃+ 2 log(u/δ)

)
λ̃xγ2κ2

µ

.

(A.352)
Combining both conditions on Ti,t together, we have that

Ti,t ≥ max

32
(
d̃+ 2 log(u/δ)

)
λ̃xγ2κ2

µ

,
16

λ̃2
x

log(24udm
2
NN(L− 1)

λ̃2
xδ

)


(A.353)

By Lemma 8 in [135] and Assumption 9.3 of user arrival uni-
formness, we have that for all

T0 ≜ 16u log(u
δ
) + 4umax

32
(
d̃+ 2 log(u/δ)

)
λ̃xγ2κ2

µ

,
16

λ̃2
x

log(24udm
2
NN(L− 1)

λ̃2
xδ

)


= O

(
u

(
d̃

κ2
µλ̃xγ2

+
1

λ̃2
x

)
log(1

δ
)

)
,

the condition in Eq.(A.352) is satisfied with probability at least
1− δ.

Therefore we have that for all t ≥ T0, with probability ≥ 1−3δ:
√
mNN

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ

4
, ∀i ∈ U . (A.354)

Finally, we show that as long as the condition√mNN

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ
4 , ∀i ∈ U , our algorithm can cluster all the users correctly.

First, we show that when the edge (i, l) is deleted, user i

and user j must belong to different ground-truth clusters, i.e.,
‖θf,i − θf,l‖2 > 0. This is because by the deletion rule of the
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algorithm, the concentration bound, and triangle inequality
√
mNN ‖θf,i − θf,l‖2 =

√
mNN

∥∥∥θj(i) − θj(l)
∥∥∥
2

≥
√
mNN

∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
−
√
mNN

∥∥∥θj(l) − θ̂l,t

∥∥∥
2
−
√
mNN

∥∥∥θj(i) − θ̂i,t

∥∥∥
2

≥
√
mNN

∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
− f(Ti,t)− f(Tl,t) > 0 . (A.355)

Second, we can show that if |fi(x)−fl(x)| ≥ γ′, ∀x ∈ X , meaning
that user i and user l are not in the same ground-truth cluster,
CONDB will delete the edge (i, l) after T0. Note that when user i
and user l are not in the same ground-truth cluster, Lemma A.9.2
tells us that √mNN ‖θf,i − θf,l‖ ≥ γ′. Then we have that
√
mNN

∥∥∥θ̂i,t − θ̂l,t

∥∥∥
≥
√
mNN ‖θf,i − θf,l‖ −

√
mNN

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
−
√
mNN

∥∥∥θ̂l,t − θj(l)
∥∥∥
2

> γ − γ

4
− γ

4

=
γ

2
> f(Ti,t) + f(Tl,t) , (A.356)

which will trigger the edge deletion rule to delete edge (i, l). This
completes the proof.

Then, we prove the following lemmas for the cluster-based
statistics.

Lemma A.9.6. Assuming that the conditions on m from eq. (A.344)
are satisfied. With probability at least 1−4δ for some δ ∈ (0, 1/4),
at any t ≥ T0:

√
mNN

∥∥θf,it − θt

∥∥
Vt−1
≤ βT +B

√
λ

κµ
+ 1, ∀t ∈ [T ].
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Proof. To begin with, note that by Lemma A.9.5, we have that
with probability of at least 1−3δ, all users are clustered correctly,
i.e., Ct = Cj(it), ∀t ≥ T0. Note that according to our Algorithm
19, in iteration t, we select the pair of arms using all the data
collected by all users in cluster Ct. That is, θt represents the
NN parameters trained using the data from all users in the clus-
ter Ct (i.e., {(xs,1,xs,2, ys)}s∈[t−1],is∈Ct

), and Vt also contains the
data from all users in this cluster Ct. Therefore, in iteration t,
we are effectively following a neural dueling bandit algorithm us-
ing {(xs,1,xs,2, ys)}s∈[t−1],is∈Ct

as the current observation history.
This allows us to leverage the proof of Lemma 6 from [60] to
complete the proof.

Lemma A.9.7. Let ε′mNN,t
≜ C2m

−1/6
NN
√
logmNNL

3
(
t
λ

)4/3 where
C2 > 0 is an absolute constant. Then

|〈g(x;θ0)−g(x′;θ0),θt−θ0〉−(h(x;θt)−h(x′;θt))| ≤ 2ε′mNN,t
, ∀t ∈ [T ],x,x′ ∈ Xt.

Proof. This lemma can be proved following a similar line of proof
as Lemma 1 from [60].

Lemma A.9.8. Let δ ∈ (0, 1), ε′mNN,t
.
= C2m

−1/6
NN
√
logmNNL

3
(
t
λ

)4/3
for some C2 > 0. As long as mNN ≥ poly(T, L,K, u, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)),
then with probability of at least 1− δ, at any t ≥ T0,

| [fit(x)− fit(x
′)]−

[
h(x;θt)− h(x′;θt)

]
| ≤ νTσt−1(x,x

′)+2ε′mNN,t
,

for all x,x′ ∈ Xt, t ∈ [T ].

Proof. Denote ϕ(x) = 1√
mNN

g(x;θ0). Recall that theorem A.9.1
tells us that fit(x) = 〈g(x;θ0),θf,it − θ0〉 = 〈ϕ(x),θf,it − θ0〉 for
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all x ∈ Xt, t ∈ [T ]. To begin with, for all x,x′ ∈ Xt, t ∈ [T ] we
have that

|fit(x)− fit(x
′)− 〈g(x;θ0)− g(x′;θ0),θt − θ0〉|

= |〈g(x;θ0)− g(x′;θ0),θf,it − θ0〉 − 〈g(x;θ0)− g(x′;θ0),θt − θ0〉|

= |〈g(x;θ0)− g(x′;θ0),θf,it − θt〉〉|

= |〈ϕ(x)− ϕ(x′),
√
mNN

(
θf,it − θt

)
〉|

≤ ‖(ϕ(x)− ϕ(x′))‖V −1
t−1

√
mNN

∥∥θf,it − θt

∥∥
Vt−1

≤ ‖(ϕ(x)− ϕ(x′))‖V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
,

(A.357)

in which we have used Lemma A.9.6 in the last inequality. Now
making use of the equation above and theorem A.9.7, we have
that

|fit(x)− fit(x
′)− (h(x;θt)− h(x′;θt))|

= |fit(x)− fit(x
′)− 〈g(x;θ0)− g(x′;θ0),θt − θ0〉

+ 〈g(x;θ0)− g(x′;θ0),θt − θ0〉 − (h(x;θt)− h(x′;θt))|

≤ |fit(x)− fit(x
′)− 〈g(x;θ0)− g(x′;θ0),θt − θ0〉|

+ |〈g(x;θ0)− g(x′;θ0),θt − θ0〉 − (h(x;θt)− h(x′;θt))|

≤
∥∥∥∥ 1
√
mNN

(ϕ(x)− ϕ(x′))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
+ 2ε′mNN,t

.

(A.358)

This completes the proof.

We also prove the following lemma to upper bound the sum-
mation of squared norms which will be used in proving the final
regret bound.
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Lemma A.9.9. With probability at least 1− 4δ, we have
T∑

t=T0

I{it ∈ Cj} ‖ϕ(xt,1)− ϕ(xt,2)‖2V −1
t−1
≤ 16d̃ , ∀j ∈ [m] ,

where I denotes the indicator function.

Proof. We denote ϕ̃t = ϕ(xt,1) − ϕ(xt,2). Note that we have de-
fined ϕ(x) = 1√

mNN
g(x;θ0). Here we assume that ‖ϕ(xt,1)− ϕ(xt,2)‖2 =

1√
mNN
‖g(xt,1;θ0)− g(xt,2;θ0)‖2 ≤ 2. Replacing 2 by an absolute

constant c0 would only change the final regret bound by a con-
stant factor, so we omit it for simplicity.

It is easy to verify that Vt−1 � λ
κµ
I and hence V −1t−1 �

κµ

λ I.

Therefore, we have that
∥∥∥ϕ̃t

∥∥∥2
V −1
t−1

≤ κµ

λ

∥∥∥ϕ̃t

∥∥∥2
2
≤ 4κµ

λ . We choose λ

such that 4κµ

λ ≤ 1, which ensures that
∥∥∥ϕ̃t

∥∥∥2
V −1
t−1

≤ 1. Our proof
here mostly follows from Lemma 11 of [43] and Lemma J.2 of [4].
To begin with, note that x ≤ 2 log(1 + x) for x ∈ [0, 1]. Denote
Vt,j =

∑
s∈[t−1]:
is∈Cj

ϕ̃sϕ̃
>
s + λ

κµ
I. Then we have that

T∑
t=T0

I{it ∈ Cj}
∥∥∥ϕ̃t

∥∥∥2
V −1
t−1

≤
T∑

t=T0

2 log
(
1 + I{it ∈ Cj}

∥∥∥ϕ̃t

∥∥∥2
V −1
t−1

)
≤ 16 log det

(κµ

λ
H′ + I

)
≜ 16d̃.

(A.359)

The second inequality follows from the proof in Section A.3 from
[60]. This completes the proof.

Now we are ready to prove Theorem 9.4.2. To begin with, we
have that RT =

∑T
t=1 rt ≤ T0 +

∑T
t=T0

rt.
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Then, we only need to upper-bound the regret after T0. By
Lemma A.9.5, we know that with probability at least 1− 4δ, the
algorithm can cluster all the users correctly, Ct = Cj(it), and the
statements of all the above lemmas hold. We have that for any
t ≥ T0:

To simplify exposion here, we denote β′T ≜ βT +B
√

λ/κµ +1.

rt = fit(x
∗
t )− fit(xt,1) + fit(x

∗
t )− fit(xt,2)

(a)

≤ 〈g(x∗t ;θ0)− g(xt,1;θ0),θt − θ0〉+ β′T ‖ϕ(x∗t )− ϕ(xt,1)‖V −1
t−1

+

〈g(x∗t ;θ0)− g(xt,2;θ0),θt − θ0〉+ β′T ‖ϕ(x∗t )− ϕ(xt,2)‖V −1
t−1

= 〈g(x∗t ;θ0)− g(xt,1;θ0),θt − θ0〉+ β′T ‖ϕ(x∗t )− ϕ(xt,1)‖V −1
t−1

+

〈g(x∗t ;θ0)− g(xt,1;θ0),θt − θ0〉+ 〈g(xt,1;θ0)− g(xt,2;θ0),θt − θ0〉+

β′T ‖ϕ(x∗t )− ϕ(xt,1) + ϕ(xt,1)− ϕ(xt,2)‖V −1
t−1

(b)

≤ 2〈g(x∗t ;θ0)− g(xt,1;θ0),θt − θ0〉+ 2β′T ‖ϕ(x∗t )− ϕ(xt,1)‖V −1
t−1

+

〈g(xt,1;θ0)− g(xt,2;θ0),θt − θ0〉+ β′T ‖ϕ(xt,1)− ϕ(xt,2)‖V −1
t−1

(c)

≤ 2h(x∗t ;θt)− 2h(xt,1;θt) + 4ε′mNN,t
+ 2β′T ‖ϕ(x∗t )− ϕ(xt,1)‖V −1

t−1
+

h(xt,1;θt)− h(xt,2;θt) + 2ε′mNN,t
+ β′T ‖ϕ(xt,1)− ϕ(xt,2)‖V −1

t−1

(d)

≤ 2h(xt,2;θt)− 2h(xt,1;θt) + 2β′T ‖ϕ(xt,2)− ϕ(xt,1)‖V −1
t−1

+

h(xt,1;θt)− h(xt,2;θt) + 6ε′mNN,t
+ β′T ‖ϕ(xt,1)− ϕ(xt,2)‖V −1

t−1

= h(xt,2;θt)− h(xt,1;θt) + 3β′T ‖ϕ(xt,1)− ϕ(xt,2)‖V −1
t−1

+ 6ε′mNN,t

(e)

≤ 3β′T ‖ϕ(xt,1)− ϕ(xt,2)‖V −1
t−1

+ 6ε′mNN,t

(A.360)

Step (a) follows from Equation A.357, step (b) results from the
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triangle inequality, step (c) has made use of Lemma A.9.7. Step
(d) follows from the way in which we choose the second arm xt,2:
xt,2 = argmaxx∈Xt

h(x;θt)+
(
βT +B

√
λ
κµ

+ 1
)
‖(ϕ(x)− ϕ(xt,1))‖V −1

t−1
.

Step (e) results from the way in which we select the first arm:
xt,1 = argmaxx∈Xt

h(x;θt).
Then we have

T∑
t=T0

rt ≤ 3β′T

T∑
t=T0

‖ϕ(xt,1)− ϕ(xt,2)‖V −1
t−1

+ 6Tε′mNN,T

= 3β′T

T∑
t=T0

∑
j∈[m]

I{it ∈ Cj} ‖ϕ(xt,1)− ϕ(xt,2)‖V −1
t−1

+ 6Tε′mNN,T

≤ 3β′T

√√√√ T∑
t=T0

∑
j∈[m]

I{it ∈ Cj}
T∑

t=T0

∑
j∈[m]

I{it ∈ Cj} ‖ϕ(xt,1)− ϕ(xt,2)‖2V −1
t−1

+ 6Tε′mNN,T

≤ 3β′T

√
T ·m · 16d̃+ 6Tε′mNN,T

(A.361)

≤ 12β′T

√
T ·m · d̃+ 6Tε′mNN,T

, (A.362)

where in the second inequality we use the Cauchy-Swarchz in-
equality, and in the last step we use

∑T
t=T0

∑
j∈[m] I{it ∈ Cj} ≤ T

and Lemma A.9.9. It can be easily verified that as long as the
conditions on m specified in eq. (A.344) are satisfied (i.e., as long
as the NN is wide enough), we have that 6Tε′mNN,T

≤ 1.

Recall that β′T ≜ βT+B
√
λ/κµ+1 and βT ≜ 1

κµ

√
d̃+ 2 log(u/δ).

Therefore, finally, we have with probability at least 1− 4δ

RT ≤ T0 + 12(βT +B
√

λ/κµ + 1)
√

T ·m · d̃+ 1

≤ O

(
u(

d̃

κ2
µλ̃xγ2

+
1

λ̃2
x

) logT +

(√
d̃

κµ
+B

√
λ

κµ

)√
d̃mT

)
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= O

((√
d̃

κµ
+B

√
λ

κµ

)√
d̃mT

)
. (A.363)
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Algorithm 19 Clustering Of Neural Dueling Bandits (CONDB)

1: Input: f(Ti,t) ≜
βT+B

√
λ
κµ

+1√
2λ̃xTi,t

, regularization parameter λ > 0, confidence

parameter βT ≜ 1
κµ

√
d̃+ 2 log(u/δ). ϕ(x) = 1√

mNN
g(x;θ0) where θ0 de-

notes the NN parameters at initialization.
2: Initialization: V0 = Vi,0 = λ

κµ
I , θ̂i,0 = 0, ∀i ∈ U , a complete Graph

G0 = (U , E0) over U .
3: for t = 1, . . . , T do
4: Receive user it ∈ U , and feasible arm set Xt;
5: Find the connected component Ct for user it in the current graph Gt−1

as the current cluster;
6: Train the neural network using {(xs,1,xs,2, ys)}s∈[t−1],is∈Ct

by minimizing
the following loss function:

θt = arg min
θ
− 1

m

∑
s∈[t−1]

is∈Ct

(ys logµ (h(xs,1;θ)− h(xs,2;θ)) + (1− ys) logµ (h(xs,2;θ)− h(xs,1;θ)))

+
λ

2
‖θ − θ0‖22 ; (A.298)

7: Calculate the aggregated information matrix for cluster Ct: Vt−1 =

V0 +
∑

s∈[t−1]

is∈Ct

(ϕ(xs,1)− ϕ(xs,2))(ϕ(xs,1)− ϕ(xs,2))
⊤.

8: Choose the first arm xt,1 = argmaxx∈Xt h(x;θt);
9: Choose the second arm xt,2 = argmaxx∈Xt h(x;θt) +(

βT +B
√

λ
κµ

+ 1
)
‖(ϕ(x)− ϕ(xt,1))‖V −1

t−1
;

10: Observe the preference feedback: yt = 1(xt,1 � xt,2), and update his-
tory: Dt = {is,xs,1,xs,2, ys}s=1,...,t;

11: Train the neural network using all data for user it:
{(xs,1,xs,2, ys)}s∈[t],is=it by minimizing the following loss function:

θ̂it,t = argminθ −
1

mNN

∑
s∈[t−1]
is=it

(
ys logµ (h(xs,1;θ)− h(xs,2;θ))

+ (1− ys) logµ (h(xs,2;θ)− h(xs,1;θ))
)
+

λ

2
‖θ − θ0‖22 ; (A.299)

keep the estimations of other users unchanged;
12: Delete the edge (it, ℓ) ∈ Et−1 if

√
mNN

∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥
2
> f(Tit,t) + f(Tℓ,t) (A.300)

13: end for
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